OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 3 — Jan. 31, 2011
  • pp: 2317–2324

Fano-like resonance in an optically driven atomic force microscope cantilever

Shahrul Kadri, Hideki Fujiwara, and Keiji Sasaki  »View Author Affiliations

Optics Express, Vol. 19, Issue 3, pp. 2317-2324 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1049 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We observe Fano-like resonance in the vibration spectrum of an optically driven atomic force microscope cantilever system. The vibration of the cantilever is photothermally induced by exciting it with a 780-nm laser diode. The asymmetry of the resonance curve strongly depends on the position of the excitation spot along the central axis of the cantilever. By using a simple physical model, we could extract and analyze the hidden resonance and continuous components in the vibration spectrum.

© 2011 OSA

OCIS Codes
(120.7280) Instrumentation, measurement, and metrology : Vibration analysis
(190.4870) Nonlinear optics : Photothermal effects
(260.5740) Physical optics : Resonance

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: November 22, 2010
Revised Manuscript: January 14, 2011
Manuscript Accepted: January 14, 2011
Published: January 24, 2011

Virtual Issues
Vol. 6, Iss. 2 Virtual Journal for Biomedical Optics

Shahrul Kadri, Hideki Fujiwara, and Keiji Sasaki, "Fano-like resonance in an optically driven atomic force microscope cantilever," Opt. Express 19, 2317-2324 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961). [CrossRef]
  2. M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008). [CrossRef] [PubMed]
  3. A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, “Fano resonance in a multimode tapered fiber coupled with a microspherical cavity,” Appl. Phys. Lett. 86(26), 261106 (2005). [CrossRef]
  4. Y. Lu, J. Yao, X. Li, and P. Wang, “Tunable asymmetrical Fano resonance and bistability in a microcavity-resonator-coupled Mach-Zehnder interferometer,” Opt. Lett. 30(22), 3069–3071 (2005). [CrossRef] [PubMed]
  5. Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74(2), 259–266 (2006). [CrossRef]
  6. M. Z. Ansari and C. Cho, “Deflection, frequeny, and stress characteristics of rectangular, triangular, and step profile microcantilevers for biosensors,” Sensors (Basel Switzerland) 9(8), 6046–6057 (2009).
  7. S. W. Stahl, E. M. Puchner, and H. E. Gaub, “Photothermal cantilever actuation for fast single-molecule force spectroscopy,” Rev. Sci. Instrum. 80(7), 073702 (2009). [CrossRef] [PubMed]
  8. J. R. Barnes, R. J. Stephenson, C. N. Woodburn, S. J. O’Shea, M. E. Welland, T. Rayment, J. K. Gimzewski, and C. Gerber, “A femtojoule calorimeter using micromechanical sensors,” Rev. Sci. Instrum. 65(12), 3793–3798 (1994). [CrossRef]
  9. S. Nishida, D. Kobayashi, T. Sakurada, T. Nakazawa, Y. Hoshi, and H. Kawakatsu, “Photothermal excitation and laser Doppler velocimetry of higher cantilever vibration modes for dynamic atomic force microscopy in liquid,” Rev. Sci. Instrum. 79(12), 123703 (2008). [CrossRef]
  10. R. M. A. Fatah, “Mechanisms of optical of micromechanical resonators,” Sens. Actuators A Phys. 33(3), 229–236 (1992). [CrossRef]
  11. C. H. Metzger and K. Karrai, “Cavity cooling of a microlever,” Nature 432(7020), 1002–1005 (2004). [CrossRef] [PubMed]
  12. D. Kleckner and D. Bouwmeester, “Sub-kelvin optical cooling of a micromechanical resonator,” Nature 444(7115), 75–78 (2006). [CrossRef] [PubMed]
  13. N. Selden, C. Ngalande, S. Gimelshein, E. P. Muntz, A. Alexeenko, and A. Ketsdever, “Area and edge effects in radiometric forces,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(4), 041201 (2009). [CrossRef] [PubMed]
  14. C. Metzger, I. Favero, A. Ortlieb, and K. Karrai, “Optical self cooling of a deformable Fabry-Perot cavity in the classical limit,” Phys. Rev. B 78(3), 035309 (2008). [CrossRef]
  15. D. Ramos, J. Mertens, M. Calleja, and J. Tamayo, “Study of the origin of bending induced by bimetallic effect on microcantilever,” Sensors (Basel Switzerland) 7(9), 1757–1765 (2007).
  16. S. Kadri, H. Fujiwara, and K. Sasaki, “Analysis of photothermally induced vibration in metal coated AFM cantilever,” Proc. SPIE 7743, 774307, 774307-6 (2010). [CrossRef]
  17. A. Wig, A. Passian, E. Arakawa, T. L. Ferrell, and T. Thundat, “Optical thin-film interference effects in microcantilevers,” J. Appl. Phys. 95(3), 1162–1165 (2004). [CrossRef]
  18. Y. Song, B. Cretin, D. M. Todorovic, and P. Vairac, “Study of photothermal vibrations of semiconductor cantilevers near the resonant frequency,” J. Phys. D Appl. Phys. 41(15), 155106 (2008). [CrossRef]
  19. K. Hane, T. Iwatuki, S. Inaba, and S. Okuma, “Frequency shift on a micromachined resonator excited photothermally in vacuum,” Rev. Sci. Instrum. 63(7), 3781–3782 (1992). [CrossRef]
  20. G. C. Ratcliff, D. A. Erie, and R. Superfine, “Photothermal modulation for oscillating mode atomic force microscopy in solution,” Appl. Phys. Lett. 72(15), 1911–1913 (1998). [CrossRef]
  21. R. W. Stark, T. Drobek, and W. M. Heckl, “Thermomechanical noise of a free v-shaped cantilever for atomic-force microscopy,” Ultramicroscopy 86(1-2), 207–215 (2001). [CrossRef] [PubMed]
  22. G. Jourdan, F. Comin, and J. Chevrier, “Mechanical mode dependence of bolometric backaction in an atomic force microscopy microlever,” Phys. Rev. Lett. 101(13), 133904 (2008). [CrossRef] [PubMed]
  23. D. W. Jordan and P. Smith, Mathematical Techniques, 3rd ed. (Oxford, New York, 2002), Chap. 20.
  24. D. Ramos, J. Tamayo, J. Mertens, and M. Calleja, “Photothermal excitation of microcantilevers in liquids,” J. Appl. Phys. 99(12), 124904 (2006). [CrossRef]
  25. E. Finot, A. Passian, and T. Thundat, “Measurement of mechanical properties of cantilever shaped materials,” Sensors (Basel Switzerland) 8(5), 3497–3541 (2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited