OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 3 — Jan. 31, 2011
  • pp: 2347–2362

Completely integrated, thermo-pneumatically tunable microlens

Wei Zhang, Khaled Aljasem, Hans Zappe, and Andreas Seifert  »View Author Affiliations


Optics Express, Vol. 19, Issue 3, pp. 2347-2362 (2011)
http://dx.doi.org/10.1364/OE.19.002347


View Full Text Article

Enhanced HTML    Acrobat PDF (4891 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An integrated tunable microlens, whose focal length may be varied over a range of 3 to 15 mm with total power consumption below 250 mW, is presented. Using thermo-pneumatic actuation, this adaptive optical microsystem is completely integrated and requires no external pressure controllers for operation. The lens system consists of a liquid-filled cavity bounded by a distensible polydimethyl-siloxane membrane and a separate thermal cavity with actuation and sensing elements, all fabricated using silicon, glass and polymers. Due to the physical separation of thermal actuators and lens body, temperature gradients in the lens optical aperture were below 4°C in the vertical and 0.2°C in the lateral directions. Optical characterization showed that the cutoff frequency of the optical transfer function, using a reference contrast of 0.2, varied from 30 lines/mm to 65 lines/mm over the tuning range, and a change in the numerical aperture from 0.067 to 0.333. Stable control of the focal length over a long time period using a simple electronic stabilization circuit was demonstrated.

© 2011 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology

ToC Category:
Adaptive Optics

History
Original Manuscript: November 3, 2010
Revised Manuscript: December 17, 2010
Manuscript Accepted: December 17, 2010
Published: January 24, 2011

Virtual Issues
Vol. 6, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Wei Zhang, Khaled Aljasem, Hans Zappe, and Andreas Seifert, "Completely integrated, thermo-pneumatically tunable microlens," Opt. Express 19, 2347-2362 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-3-2347


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Qiao, F. S. Tsai, S. H. Cho, H. Yan, and Y. H. Lo, “Fluidic intraocular lens with a large accommodation range,” IEEE Photon. Technol. Lett. 21, 304306 (2009). [CrossRef]
  2. W. Qiao, D. Johnson, F. S. Tsai, S. H. Cho, and Y. H. Lo, “Bio-inspired accommodating fluidic intraocular lens,” Opt. Lett. 34, 3214–3216 (2009). [CrossRef] [PubMed]
  3. . K. Aljasem, A. Werber, A. Seifert, and H. Zappe, “Fiber optic tunable probe for endoscopic optical coherence tomography,” J. Opt. A: Pure and Appl. Opt. 10, 044012 (8pp) (2008). [CrossRef]
  4. H. B. Yu, G. Y. Zhou, F. S. Chau, F. W. Lee, S. H. Wang, and H. M. Leung, “A liquid-filled tunable double-focus microlens,” Opt. Express 17, 4782–4790 (2009). [CrossRef] [PubMed]
  5. H. W. Ren, D. Fox, P. Anderson, B. Wu, and S. T. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Opt. Express 14, 8031–8036 (2006). [CrossRef] [PubMed]
  6. H.W. Ren and S.T. Wua, “Variable-focus liquid lens by changing aperture,” Appl. Phys. Lett. 86, 211107 (2005). [CrossRef]
  7. A. Naumov, G. Love, M. Y. Loktev, and F. Vladimirov, “Control optimization of spherical modal liquid crystal lenses,” Opt. Express 4, 344–352 (1999). [CrossRef] [PubMed]
  8. D. Y. Zhang, N. Justis, V. Lien, Y. Berdichevsky, and Y. H. Lo, “High-performance Fluidic Adaptive Lenses,” Appl. Opt. 43, 783–787 (2004). [CrossRef] [PubMed]
  9. N. T. Nguyen, “Micro-optofluidic lenses: A review,” Biomicroflu. 4, 031501 (2010). [CrossRef]
  10. H. Yu, G. Zhou, H. Leung, and F. S. Chau, “Tunable liquid-filled lens integrated with aspherical surface for spherical aberration compensation,” Opt. Express 18, 9945–9954 (2010). [CrossRef] [PubMed]
  11. S. Kuipera, and B. H. W. Hendriks, “Variable-focus liquid lens for miniature camera,” Appl. Phys. Lett. 85, 1128–1130 (2004). [CrossRef]
  12. S. Grilli, L. Miccio, V. Vespini, A. Finizio, S. D. Nicola, and P. Ferraro, “Liquid micro-lens array activated by selective electrowetting on lithium niobate substrates,” Opt. Express 16, 8084–8093 (2008). [CrossRef] [PubMed]
  13. A. Werber, and H. Zappe, “Tunable microfluidic microlenses,” Appl. Opt. 16, 3238–3245 (2007).
  14. M. D. Volder, and D. Reynaerts, “Pneumatic and hydraulic microactuators: a review,” J. Micromech. Microeng. 20, 043001 (2010). [CrossRef]
  15. N. B. Justis, D. Y. Zhang, and Y.-H. Lo, “ Integrated dynamic fluidic lens system for in vivo biological imaging,” Engineering in Medicine and Biology Society,IEMBS ’04. 26th Annual International Conference of the IEEE, pp.1256–1259 (2004) [CrossRef] [PubMed]
  16. F. Schneider, J. Draheim, R. Kamberger, P. Waibel, and U. Wallrabe, “Optical characterization of adaptive fluidic silicone-membrane lenses,” Opt. Express 17, 11813–11821 (2009). [CrossRef] [PubMed]
  17. Y. J. Yang, and H. H. Liao, “Development and characterization of thermopneumatic peristaltic micropumps,” J. Micromech. Microeng. 19, 025003 (2009). [CrossRef]
  18. A. Werber, and H. Zappe, “Thermo-pneumatically actuated, membrane-based micro-mirror devices,” J. Micromech. Microeng. 16, 2524531 (2006). [CrossRef]
  19. W. Wang, and J. Fang, “Design, fabrication and testing of a micromachined integrated tunable microlens,” J. Micromech. Microeng. 16, 1221–1226 (2006). [CrossRef]
  20. S. Sawano, K. Naka, A. Werber, H. Zappe, and S. Konishi, “Sealing method of PDMS as elastic material for MEMS,” in Proc. IEEE Conference on Micro Electro Mechanical Syst. 419 −422 (2008). [CrossRef]
  21. J. N. Lee, C. Park, and G. M. Whitesides, “Solvent Compatibility of Poly(dimethylsiloxane)-Based Microfluidic Devices,” Anal. Chem. 75, 6544–6554 (2003). [CrossRef] [PubMed]
  22. G. P. Behrmann, and J. P. Bowen, “Influence of temperature on diffractive lens performance,” Appl. Opt. 32, 2483–2489 (1993). [CrossRef] [PubMed]
  23. . Y. A. Cengel, Heat transfer:a practical approach (2002) pp.860.
  24. H. Esch, G. Huyberechts, R. Mertens, G. Maes, J. Manca, W. D. Ceuninck, and L. D. Schepper, “The stability of Pt heater and temperature sensing elements for silicon integrated tin oxide gas sensors,” Sens. Actuators B Chem. 65, 190–192 (2000). [CrossRef]
  25. W. Zhang, K. Aljasem, H. Zappe, and A. Seifert, “Highly flexible MTF measurement system for tunable micro lenses,” Opt. Express 18, 12458–12469 (2010). [CrossRef] [PubMed]
  26. K. Handique, D. T. Burke, C. H. Mastrangelo, and M. A. Burns, “On-Chip Thermopneumatic Pressure for Discrete Drop Pumping,” Anal. Chem. 73, 1831–1838 (2001). [CrossRef] [PubMed]
  27. P. Srinivasan, and S. M. Spearing, “Material Selection for Optimal Design of Thermally Actuated Pneumatic and Phase Change Microactuators,” JMEMS 18, 239–249 (2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited