OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 3 — Jan. 31, 2011
  • pp: 2391–2400

Electrically controllable liquid crystal random lasers below the Fréedericksz transition threshold

Chia-Rong Lee, Jia-De Lin, Bo-Yuang Huang, Shih-Hung Lin, Ting-Shan Mo, Shuan-Yu Huang, Chie-Tong Kuo, and Hui-Chen Yeh  »View Author Affiliations


Optics Express, Vol. 19, Issue 3, pp. 2391-2400 (2011)
http://dx.doi.org/10.1364/OE.19.002391


View Full Text Article

Enhanced HTML    Acrobat PDF (1518 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This investigation elucidates for the first time electrically controllable random lasers below the threshold voltage in dye-doped liquid crystal (DDLC) cells with and without adding an azo-dye. Experimental results show that the lasing intensities and the energy thresholds of the random lasers can be decreased and increased, respectively, by increasing the applied voltage below the Fréedericksz transition threshold. The below-threshold-electric-controllability of the random lasers is attributable to the effective decrease of the spatial fluctuation of the orientational order and thus of the dielectric tensor of LCs by increasing the electric-field-aligned order of LCs below the threshold, thereby increasing the diffusion constant and decreasing the scattering strength of the fluorescence photons in their recurrent multiple scattering. This can result in the decrease in the lasing intensity of the random lasers and the increase in their energy thresholds. Furthermore, the addition of an azo-dye in DDLC cell can induce the range of the working voltage below the threshold for the control of the random laser to reduce.

© 2011 OSA

OCIS Codes
(140.3600) Lasers and laser optics : Lasers, tunable
(160.3710) Materials : Liquid crystals
(230.3720) Optical devices : Liquid-crystal devices
(290.4210) Scattering : Multiple scattering

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: November 8, 2010
Revised Manuscript: December 24, 2010
Manuscript Accepted: January 17, 2011
Published: January 25, 2011

Virtual Issues
Vol. 6, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Chia-Rong Lee, Jia-De Lin, Bo-Yuang Huang, Shih-Hung Lin, Ting-Shan Mo, Shuan-Yu Huang, Chie-Tong Kuo, and Hui-Chen Yeh, "Electrically controllable liquid crystal random lasers below the Fréedericksz transition threshold," Opt. Express 19, 2391-2400 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-3-2391


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994). [CrossRef]
  2. H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999). [CrossRef]
  3. H. Cao, J. Y. Xu, E. W. Seelig, and R. P. H. Chang, “Microlaser made of disordered media,” Appl. Phys. Lett. 76(21), 2997–2999 (2000). [CrossRef]
  4. D. S. Wiersma, “The smallest random laser,” Nature 406(6792), 132–135 (2000). [CrossRef] [PubMed]
  5. D. S. Wiersma and S. Cavalieri, “Light emission: A temperature-tunable random laser,” Nature 414(6865), 708–709 (2001). [CrossRef] [PubMed]
  6. V. M. Apalkov, M. E. Raikh, and B. Shapiro, “Random resonators and prelocalized modes in disordered dielectric films,” Phys. Rev. Lett. 89(1), 016802 (2002). [CrossRef] [PubMed]
  7. R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett. 85(7), 1289–1291 (2004). [CrossRef]
  8. Q. H. Song, L. Wang, S. M. Xiao, X. C. Zhou, L. Y. Liu, and L. Xu, “Random laser emission from a surface-corrugated waveguide,” Phys. Rev. B 72(3), 035424 (2005). [CrossRef]
  9. S. V. Frolov, Z. V. Varderny, K. Yoshino, A. Zakhidov, and R. H. Baughman, “Stimulated emission in high-gain organic media,” Phys. Rev. B 59(8), R5284–R5287 (1999). [CrossRef]
  10. D. S. Wiersma, M. Colocci, R. Righini, and F. Aliev, “Temperature-controlled light diffusion in random media,” Phys. Rev. B 64(14), 144208 (2001). [CrossRef]
  11. S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Electronic control of nonresonant random lasing from a dye-doped smectic A* liquid crystal scattering device,” Appl. Phys. Lett. 86(14), 141103 (2005). [CrossRef]
  12. G. Strangi, S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, and R. Bartolino, “Random lasing and weak localization of light in dye-doped nematic liquid crystals,” Opt. Express 14(17), 7737–7744 (2006). [CrossRef] [PubMed]
  13. S. Ferjani, A. De Luca, V. Barna, C. Versace, and G. Strangi, “Thermo-recurrent nematic random laser,” Opt. Express 17(3), 2042–2047 (2009). [CrossRef] [PubMed]
  14. Q. H. Song, S. M. Xiao, X. C. Zhou, L. Y. Liu, L. Xu, Y. G. Wu, and Z. S. Wang, “Liquid-crystal-based tunable high-Q directional random laser from a planar random microcavity,” Opt. Lett. 32(4), 373–375 (2007). [CrossRef] [PubMed]
  15. S. Ferjani, V. Barna, A. De Luca, C. Versace, and G. Strangi, “Random lasing in freely suspended dye-doped nematic liquid crystals,” Opt. Lett. 33(6), 557–559 (2008). [CrossRef] [PubMed]
  16. Q. H. Song, L. Y. Liu, L. Xu, Y. G. Wu, and Z. S. Wang, “Electrical tunable random laser emission from a liquid-crystal infiltrated disordered planar microcavity,” Opt. Lett. 34(3), 298–300 (2009). [CrossRef] [PubMed]
  17. S. Gottardo, S. Cavalieri, O. Yaroshchuk, and D. S. Wiersma, “Quasi-two-dimensional diffusive random laser action,” Phys. Rev. Lett. 93(26), 263901 (2004). [CrossRef]
  18. Y. J. Liu, X. W. Sun, H. I. Elim, and W. Ji, “Gain narrowing and random lasing from dye-doped polymer dispersed liquid crystals with nanoscale liquid crystal droplets,” Appl. Phys. Lett. 89(1), 011111 (2006). [CrossRef]
  19. S. Ferjani, L. Sorriso-Valvo, A. De Luca, V. Barna, R. De Marco, and G. Strangi, “Statistical analysis of random lasing emission properties in nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(1), 011707 (2008). [CrossRef] [PubMed]
  20. D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008). [CrossRef]
  21. C.-R. Lee, S.-H. Lin, C.-H. Guo, S.-H. Chang, T.-S. Mo, and S.-C. Chu, “All-optically controllable random laser based on a dye-doped polymer-dispersed liquid crystal with nano-sized droplets,” Opt. Express 18(3), 2406–2412 (2010). [CrossRef] [PubMed]
  22. C.-R. Lee, J.-D. Lin, B.-Y. Huang, T.-S. Mo, and S.-Y. Huang, “All-optically controllable random laser based on a dye-doped liquid crystal added with a photoisomerizable dye,” Opt. Express 18(25), 25896–25905 (2010). [CrossRef] [PubMed]
  23. M. P. van Albada and A. Lagendijk, “Observation of weak localization of light in a random medium,” Phys. Rev. Lett. 55(24), 2692–2695 (1985). [CrossRef] [PubMed]
  24. E. Akkermans, P. E. Wolf, and R. Maynard, “Coherent backscattering of light by disordered media: Analysis of the peak line shape,” Phys. Rev. Lett. 56(14), 1471–1474 (1986). [CrossRef] [PubMed]
  25. M. P. van Albada, M. B. van der Mark, and A. Lagendijk, “Observation of weak localization of light in a finite slab: anisotropy effects and light path classification,” Phys. Rev. Lett. 58(4), 361–364 (1987). [CrossRef] [PubMed]
  26. P. C. de Oliveira, A. E. Perkins, and N. M. Lawandy, “Coherent backscattering from high-gain scattering media,” Opt. Lett. 21(20), 1685–1687 (1996). [CrossRef] [PubMed]
  27. D. Demus, J. Goodby, G. W. Gray, H.-W. Spiess, and V. Vill, Handbook of Liquid Crystals (Wiley-VCH, Weinheim, 1998), Chap. 9.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited