OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 3 — Jan. 31, 2011
  • pp: 2417–2425

Micro-resonator with metallic mirrors coupled to a bus waveguide

Steve Zamek, Liang Feng, Mercedeh Khajavikhan, Dawn T. H. Tan, Maurice Ayache, and Yeshaiahu Fainman  »View Author Affiliations


Optics Express, Vol. 19, Issue 3, pp. 2417-2425 (2011)
http://dx.doi.org/10.1364/OE.19.002417


View Full Text Article

Enhanced HTML    Acrobat PDF (1482 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a micro-resonator based on a channel waveguide terminated with metallic mirrors side coupled to a bus waveguide. Transmission through such a resonant structure implemented in a silicon-on-insulator platform is investigated theoretically and demonstrated experimentally. The resonator is 13.4 μm long, exhibits an unloaded Q-factor of ∼2100, and a free spectral range of 21 nm around the wavelength of 1.55 μm.

© 2011 Optical Society of America

OCIS Codes
(230.5750) Optical devices : Resonators
(130.7408) Integrated optics : Wavelength filtering devices

ToC Category:
Integrated Optics

History
Original Manuscript: December 7, 2010
Revised Manuscript: December 19, 2010
Manuscript Accepted: December 23, 2010
Published: January 25, 2011

Citation
Steve Zamek, Liang Feng, Mercedeh Khajavikhan, Dawn T. H. Tan, Maurice Ayache, and Yeshaiahu Fainman, "Micro-resonator with metallic mirrors coupled to a bus waveguide," Opt. Express 19, 2417-2425 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-3-2417


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, "Label-free, single-molecule detection with optical microcavities," Science 317(5839), 783-787 (2007). [CrossRef] [PubMed]
  2. S. F. Preble, Q. Xu, and M. Lipson, "Changing the colour of light in a silicon resonator," Nat. Photonics 1(5), 293-296 (2007). [CrossRef]
  3. A. Mizrahi, V. Lomakin, B. A. Slutsky, M. P. Nezhad, L. Feng, and Y. Fainman, "Low threshold gain metal coated laser nanoresonators," Opt. Lett. 33(11), 1261-1263 (2008). [CrossRef] [PubMed]
  4. M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, "Room-temperature subwavelength metallo-dielectric lasers," Nat. Photonics 4(6), 395-399 (2010). [CrossRef]
  5. L. Zhang and A. E. Willner, "Microresonators for Communication and Signal Processing Applications", in Photonic Microresonator Research and Applications, I. Chremmos, O. Schwelb, and N. Uzunoglu, eds., (Springer 2010), pp. 485-505. [CrossRef]
  6. T. Baba, "Slow light in photonic crystals," Nat. Photonics 2(8), 465-473 (2008). [CrossRef]
  7. L. Pavesi, and D. J. Lockwood, eds., Silicon Photonics, (Springer 2004), pp. 51-84.
  8. B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, "Ultra-compact Si-SiO2 microring resonator optical channel dropping filters," IEEE Photon. Technol. Lett. 10(4), 549-551 (1998). [CrossRef]
  9. P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, "Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography," IEEE Photon. Technol. Lett. 16(5), 1328-1330 (2004). [CrossRef]
  10. Q. Xu, and M. Lipson, "Carrier-induced optical bistability in silicon ring resonators," Opt. Lett. 31(3), 341-343 (2006). [CrossRef] [PubMed]
  11. P. Koonath, T. Indukuri, and B. Jalali, "Add-drop filters utilizing vertically coupled microdisk resonators in silicon," Appl. Phys. Lett. 86(9), 091102 (2005). [CrossRef]
  12. A. Morand, Y. Zhang, B. Martin, K. Phan Huy, D. Amans, P. Benech, J. Verbert, E. Hadji, and J. M. Fédéli, "Ultra-compact microdisk resonator filters on SOI substrate," Opt. Express 14(26), 12814-12821 (2006). [CrossRef] [PubMed]
  13. H.-C. Kim, K. Ikeda, and Y. Fainman, "Tunable transmission resonant filter and modulator with vertical gratings," J. Lightwave Technol. 25(5), 1147-1151 (2007). [CrossRef]
  14. H.-C. Kim, K. Ikeda, and Y. Fainman, "Resonant waveguide device with vertical gratings," Opt. Lett. 32(5), 539-541 (2007). [CrossRef] [PubMed]
  15. K. Vahala, Optical Microcavities, (World Scientific Publishing 2004). [CrossRef]
  16. J. Heebner, R. Grover, T. Ibrahim, Optical Microresonators. Theory, Fabrication, and Applications, (Springer-Verlag 2008).
  17. H. A. Haus, Waves and Fields in Optoelectronics, (Prentice Hall 1984), ch. 8.3, pp. 226-8 and 243.
  18. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic crystals: molding the flow of light, (Princeton University Press 1995).
  19. L. A. Coldren, and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, (Wiley & Sons 1995), ch. 3.
  20. S. Wolff, A. R. Giehl, M. Renno, and H. Fouckhardt, "Metallic waveguide mirrors in polymer film waveguides," Appl. Phys. B 73(5-6), 623-627 (2001). [CrossRef]
  21. Y. Shibata, T. Suzuki, and H. Tsuda, "Design and Evaluation of an N:N Optical Coupler Using an Integrated Waveguide Mirror," Opt. Rev. 11(3), 182-187 (2004). [CrossRef]
  22. S. Zamek, A. Mizrahi, L. Feng, A. Simic, and Y. Fainman, "On-chip waveguide resonator with metallic mirrors," Opt. Lett. 35(4), 598-600 (2010). [CrossRef] [PubMed]
  23. A. Yariv, Optical Electronics, 3d Ed. (Holt, Rinehart and Winston 1985), ch. 13.7, p. 432.
  24. R. Kazarinov, C. Henry, and N. Olsson, "Narrow Band Resonant Optical Reflectors and Resonant Optical Transformers for Laser Stabilization and Wavelength Division Multiplexing," IEEE J. Quantum Electron. 23(9), 1419-1425 (1987). [CrossRef]
  25. H. A. Haus, and Y. Lai, "Theory of Cascaded Quarter Wave Shifted Distributed Feedback Resonators," IEEE J. Quantum Electron. 28(1), 205-213 (1992). [CrossRef]
  26. C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. 35(9), 1322-1331 (1999). [CrossRef]
  27. Y. Xu, Y. Li, R. K. Lee, and A. Yariv, "Scattering-theory analysis of waveguide-resonator coupling," Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(5 5 Pt B), 7389-7404 (2000). [CrossRef] [PubMed]
  28. M. Lohmeyer, "Mode expansion modeling of rectangular integrated optical microresonators," Opt. Quantum Electron. 34(5-6), 541-557 (2002). [CrossRef]
  29. M. Hammer, D. Yudistira, and R. Stoffer, "Modeling of grating assisted standing wave microresonators for filter applications in integrated optics," Opt. Quantum Electron. 36(1-3), 25-42 (2004). [CrossRef]
  30. E. D. Palik, ed., Handbook of Optical Constants of Solids, (Academic 1985), p. 294.
  31. A. B. Buckman, Guided Wave Photonics, (Saunder College Publishing 1992), pp. 149-154.
  32. K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, "Experimental demonstration of a high quality factor photonic crystal microcavity," Appl. Phys. Lett. 83(10), 1915 (2003). [CrossRef]
  33. J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, "Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity," Phys. Rev. Lett. 81(5), 1110-1113 (1998). [CrossRef]
  34. Y.-F. Xiao, C.-L. Zou, B.-B. Li, Y. Li, C.-H. Dong, Z.-F. Han, and Q. Gong, "High-Q Exterior Whispering-Gallery Modes in a Metal-Coated Microresonator," Phys. Rev. Lett. 105(15), 153902 (2010). [CrossRef]
  35. K. Preston and M. Lipson, "Slot waveguides with polycrystalline silicon for electrical injection," Opt. Express 17(3), 1527-1534 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited