OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 3 — Jan. 31, 2011
  • pp: 2493–2501

Sensitive and selective detection of OH radicals using Faraday rotation spectroscopy at 2.8 µm

Weixiong Zhao, Gerard Wysocki, Weidong Chen, Eric Fertein, David Le Coq, Denis Petitprez, and Weijun Zhang  »View Author Affiliations

Optics Express, Vol. 19, Issue 3, pp. 2493-2501 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (994 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the development of a Faraday rotation spectroscopy (FRS) instrument using a DFB diode laser operating at 2.8 µm for the hydroxyl (OH) free radical detection. The highest absorption line intensity and the largest gJ value make the Q (1.5) double lines of the 2Π3/2 state (υ = 1← 0) at 2.8 µm clearly the best choice for sensitive detection in the infrared region by FRS. The prototype instrument shows shot-noise dominated performance and, with an active optical pathlength of only 25 cm and a lock-in time constant of 100 ms, achieves a 1σ detection limit of 8.2 × 108 OH radicals/cm3.

© 2011 OSA

OCIS Codes
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(300.6380) Spectroscopy : Spectroscopy, modulation
(010.0280) Atmospheric and oceanic optics : Remote sensing and sensors

ToC Category:

Original Manuscript: August 27, 2010
Revised Manuscript: October 23, 2010
Manuscript Accepted: October 25, 2010
Published: January 26, 2011

Weixiong Zhao, Gerard Wysocki, Weidong Chen, Eric Fertein, David Le Coq, Denis Petitprez, and Weijun Zhang, "Sensitive and selective detection of OH radicals using Faraday rotation spectroscopy at 2.8 µm," Opt. Express 19, 2493-2501 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. E. Heard and M. J. Pilling, “Measurement of OH and HO2 in the troposphere,” Chem. Rev. 103(12), 5163–5198 (2003). [CrossRef] [PubMed]
  2. L. Corner, J. S. Gibb, G. Hancock, A. Hutchinson, V. L. Kasyutich, R. Peverall, and G. A. D. Ritchie, “Sum frequency generation at 309 nm using a violet and a near-IR DFB diode laser for detection of OH,” Appl. Phys. B 74(4-5), 441–444 (2002). [CrossRef]
  3. T. A. Blake, C. Chackerian, and J. R. Podolske, “Prognosis for a mid-infrared magnetic rotation spectrometer for the in situ detection of atmospheric free radicals,” Appl. Opt. 35(6), 973–985 (1996). [CrossRef] [PubMed]
  4. R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultrasensitive detection of nitric oxide at 5.33  m by using external cavity quantum cascade laser-based Faraday rotation spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 106(31), 12587–12592 (2009). [CrossRef] [PubMed]
  5. G. Litfin, C. R. Pollock, R. F. Curl, and F. K. Tittel, “Sensitivity enhancement of laser absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys. 72(12), 6602–6605 (1980). [CrossRef]
  6. J. Pfeiffer, D. Kirsten, P. Kalkert, and W. Urban, “Sensitive magnetic rotation spectroscopy of the OH free radical fundamental band with a color centre laser,” Appl. Phys. B 26(3), 173–177 (1981). [CrossRef]
  7. L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96(2), 139–204 (2005). [CrossRef]
  8. W. Zhao, X. Gao, L. Hao, M. Huang, T. Huang, T. Wu, W. Zhang, and W. Chen, “Use of integrated cavity output spectroscopy for studying gas phase chemistry in a smog chamber: Characterizing the photolysis of methyl nitrite (CH3ONO),” Vib. Spectrosc. 44(2), 388–393 (2007). [CrossRef]
  9. H. Ganser, W. Urban, and J. M. Brown, “The sensitive detection of NO by Faraday modulation spectroscopy with a quantum cascade laser,” Mol. Phys. 101(4), 545–550 (2003). [CrossRef]
  10. H. E. Radford, “Microwave Zeeman effect of free hydroxyl radicals,” Phys. Rev. 122(1), 114–130 (1961). [CrossRef]
  11. H. E. Radford, “Microwave Zeeman effect of free hydroxyl radicals: 2Π1/2 levels,” Phys. Rev. 126(3), 1035–1045 (1962). [CrossRef]
  12. G. Pesce, G. Rusciano, and A. Sasso, “Detection and spectroscopy of OH fundamental vibrational band based on a difference frequency generation at 3 µm,” Chem. Phys. Lett. 374(5-6), 425–431 (2003). [CrossRef]
  13. D. C. Scott, R. L. Herman, C. R. Webster, R. D. May, G. J. Flesch, and E. J. Moyer, “Airborne laser infrared absorption spectrometer (ALIAS-II) for in situ atmospheric measurements of N2O, CH4, CO, HCl, and NO2 from balloon or remotely piloted aircraft platforms,” Appl. Opt. 38(21), 4609–4622 (1999). [CrossRef]
  14. J. Mao, X. Ren, W. H. Brune, J. R. Olson, J. H. Crawford, A. Fried, L. G. Huey, R. C. Cohen, B. Heikes, H. B. Singh, D. R. Blake, G. W. Sachse, G. S. Diskin, S. R. Hall, and R. E. Shetter, “Airborne measurement of OH reactivity during INTEX-B,” Atmos. Chem. Phys. 9(1), 163–173 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited