OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 3 — Jan. 31, 2011
  • pp: 2502–2518

Hyper-spectral confocal nano-imaging with a 2D super-lens

Kiang Wei Kho, Shen ZeXiang, and Olivo Malini  »View Author Affiliations


Optics Express, Vol. 19, Issue 3, pp. 2502-2518 (2011)
http://dx.doi.org/10.1364/OE.19.002502


View Full Text Article

Enhanced HTML    Acrobat PDF (1402 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Achieving sub-100 nm resolution over a broad visible bandwidth has long been an elusive goal in the nano-imaging of cell-surface interfaces. While metamaterial super-lenses and near-field optics have been previously demonstrated, these techniques can operate only at one wavelength, and do not provide accesses to the cell-surface interfaces. Here, we investigate a broadband 2D lens comprised of an oblate spheroidal dielectric cavity embedded just beneath a planar metal surface. The lens operates by adiabatically focusing asymmetric plasmon energies at sub-100 nm scale on the low-index side of the thin metal film formed between the cavity top and the planar metal surface. We then proposed the use of our lens in a high-resolution far-field confocal microscopy setup. Due to the surface-field nature of our lens, the presented system holds potential as an indispensable tool for cell-surface interfacial studies that require sub-100 nm hyper-spectral imaging analysis.

© 2011 OSA

OCIS Codes
(110.0110) Imaging systems : Imaging systems
(240.0240) Optics at surfaces : Optics at surfaces
(350.0350) Other areas of optics : Other areas of optics

ToC Category:
Optics at Surfaces

History
Original Manuscript: September 21, 2010
Revised Manuscript: October 17, 2010
Manuscript Accepted: October 18, 2010
Published: January 26, 2011

Virtual Issues
Vol. 6, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Kiang Wei Kho, Shen ZeXiang, and Olivo Malini, "Hyper-spectral confocal nano-imaging with a 2D super-lens," Opt. Express 19, 2502-2518 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-3-2502


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. M. Engelman, “Membranes are more mosaic than fluid,” Nature 438(7068), 578–580 (2005). [CrossRef] [PubMed]
  2. Z. Ma, J. M. Gerton, L. A. Wade, and S. R. Quake, “Fluorescence near-field microscopy of DNA at sub-10 nm resolution,” Phys. Rev. Lett. 97(26), 260801 (2006). [CrossRef]
  3. K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature 440(7086), 935–939 (2006). [CrossRef] [PubMed]
  4. S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3(7), 388–394 (2009). [CrossRef]
  5. A. W. Zimmerman, B. Joosten, R. Torensma, J. R. Parnes, F. N. van Leeuwen, and C. G. Figdor, “Long-term engagement of CD6 and ALCAM is essential for T-cell proliferation induced by dendritic cells,” Blood 107(8), 3212–3220 (2006). [CrossRef]
  6. R. C. Dunn, “Near-field scanning optical microscopy,” Chem. Rev. 99(10), 2891–2928 (1999). [CrossRef]
  7. L. Jin, A. C. Millard, J. P. Wuskell, X. Dong, D. Wu, H. A. Clark, and L. M. Loew, “Characterization and application of a new optical probe for membrane lipid domains,” Biophys. J. 90(7), 2563–2575 (2006). [CrossRef] [PubMed]
  8. R. Böhme, M. Richter, D. Cialla, P. Rösch, V. Deckert, and J. Popp, “Towards a specific characterisation of components on a cell surface - combined TERS-investigations of lipids and human cells,” J. Raman Spectrosc. 40(10), 1452–1457 (2009). [CrossRef]
  9. E. O. Potma and X. S. Xie, “Direct visualization of lipid phase segregation in single lipid bilayers with coherent anti-Stokes Raman scattering microscopy,” ChemPhysChem 6(1), 77–79 (2005). [CrossRef] [PubMed]
  10. E. B. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388 (1994). [CrossRef]
  11. C. Höppener and L. Novotny, “Antenna-based optical imaging of single Ca2+ transmembrane proteins in liquids,” Nano Lett. 8(2), 642–646 (2008). [CrossRef] [PubMed]
  12. M. C. Frassanito, C. Piccoli, V. Capozzi, D. Boffoli, A. Tabilio, and N. Capitanio, “Topological organisation of NADPH-oxidase in haematopoietic stem cell membrane: preliminat study by fluorescence near-field optical microscopy,” J. Microsc. 229(3), 517–524 (2008). [CrossRef] [PubMed]
  13. U. C. Fischer and D. W. Pohl, “Observation of single-particle plasmons by near-field optical microscopy,” Phys. Rev. Lett. 62(4), 458–461 (1989). [CrossRef] [PubMed]
  14. A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulation,” Phys. Rev. B 74(7), 075103 (2006). [CrossRef]
  15. P. B. Johnson and R. W. Christy, “Optical Constants of Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  16. H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6(4), 827–832 (2006). [CrossRef] [PubMed]
  17. J. J. Burk and G. I. Stegeman, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5176 (1986).
  18. J. A. Champion, Y. K. Katare, and S. Mitragotri, “Making polymeric micro- and nanoparticles of complex shapes,” Proc. Natl. Acad. Sci. U.S.A. 104(29), 11901–11904 (2007). [CrossRef] [PubMed]
  19. E. Snoeks, A. V. Blaaderen, T. V. Dillen, C. M. Kats, M. L. Brongersma, and A. Polman, “Colloidal Ellipsoids with Continuously Variable Shape,” Adv. Mater. 12(20), 1511–1514 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited