OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 3 — Jan. 31, 2011
  • pp: 2573–2579

Microelectrode fabrication by laser direct curing of tiny nanoparticle self-generated from organometallic ink

Bongchul Kang, Seunghwan Ko, Jongsu Kim, and Minyang Yang  »View Author Affiliations


Optics Express, Vol. 19, Issue 3, pp. 2573-2579 (2011)
http://dx.doi.org/10.1364/OE.19.002573


View Full Text Article

Enhanced HTML    Acrobat PDF (1045 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, we present a new laser direct patterning method that selectively cures nanoparticles self-generated from organometallic ink by proper thermal decomposition. This approach has several advantages in the curing rate, resolution and pattern quality compared with the conventional nanoparticle ink based direct laser curing method. It was found that a laser wavelength which is more weakly absorbed by the nanoparticles could produce a more stable and homogeneous curing condition. Finally, arbitrary shaped silver electrodes with narrow width and uniform profile could be achieved on a polymer substrate at a high curing rate of 25 mm/s. This process can be applied for flexible electronics fabrications on heat sensitive polymer substrates.

© 2011 OSA

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(160.4890) Materials : Organic materials
(310.1860) Thin films : Deposition and fabrication
(310.3840) Thin films : Materials and process characterization
(160.4236) Materials : Nanomaterials

ToC Category:
Laser Microfabrication

History
Original Manuscript: December 16, 2010
Revised Manuscript: January 20, 2011
Manuscript Accepted: January 20, 2011
Published: January 26, 2011

Citation
Bongchul Kang, Seunghwan Ko, Jongsu Kim, and Minyang Yang, "Microelectrode fabrication by laser direct curing of tiny nanoparticle self-generated from organometallic ink," Opt. Express 19, 2573-2579 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-3-2573


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Aminuzzaman, A. Watanabe, and T. Miyashita, “Fabrication of conductive silver micropatterns on an organic–inorganic hybrid film by laser direct writing,” Thin Solid Films 517(20), 5935–5939 (2009). [CrossRef]
  2. N. R. Bieri, J. Chung, S. E. Haferl, D. Poulikakos, and C. P. Grigoropoulos, “Microstructuring by printing and laser curing of nanoparticle solutions,” Appl. Phys. Lett. 82(20), 3529–3531 (2003). [CrossRef]
  3. A. Watanabe, Y. Kobayashi, M. Konno, S. Yamada, and T. Miwa, “Direct Drawing of Ag Microwiring by laser-induced pyrolysis of film prepared from liquid-dispersed metal nanoparticles,” Jpn. J. Appl. Phys. 44(23), 740–742 (2005). [CrossRef]
  4. N. R. Bieri, J. Chung, D. Poulikakos, and C. P. Grigoropoulos, “Manufacturing of nanoscale thickness gold lines by laser curing of a discretely deposited nanoparticle suspension,” Superlattices Microstruct. 35(3-6), 437–444 (2004). [CrossRef]
  5. J. Chung, S. Ko, N. R. Bieri, C. P. Grigoropoulos, and D. Poulikakos, “Conductor microstructures by laser curing of printed gold nanoparticle ink,” Appl. Phys. Lett. 84(5), 52–54 (2004). [CrossRef]
  6. N. R. Bieri, J. Chung, D. Poulikakos, and C. P. Grigoropoulos, “An experimental investigation of microresistor laser printing with gold nanoparticle-laden inks,” Appl. Phys., A Mater. Sci. Process. 80(7), 1485–1495 (2005). [CrossRef]
  7. S. Ko, H. Pan, C. P. Grigoropoulos, C. K. Luscombe, J. M. J. Fréchet, and D. Poulikakos, “Air stable high resolution organic transistors by selective laser sintering of ink-jet printed metal nanoparticles,” Appl. Phys. Lett. 90(14), 141103 (2007). [CrossRef]
  8. T. Baldacchini, A. C. Pons, J. Pons, C. N. Lafratta, J. T. Fourkas, Y. Sun, and M. J. Naughton, “Multiphoton laser direct writing of two-dimensional silver structures,” Opt. Express 13(4), 1275–1280 (2005). [CrossRef] [PubMed]
  9. S. H. Ko, H. Pan, C. P. Grigoropoulos, C. K. Luscombe, J. M. J. Fréchet, and D. Poulikakos, “All inkjet printed flexible electronics fabrication on a polymer substrate by low temperature high resolution selective laser sintering of metal nanoparticle,” Nanotechnology 18(34), 345202 (2007). [CrossRef]
  10. S. H. Ko, H. Pan, C. P. Grigoropoulos, C. K. Luscombe, J. M. J. Fréchet, and D. Poulikakos, “Lithography-free high-resolution organic transistors on polymer substrate by low temperature selective laser ablation of inkjet printed nanoparticle film,” Appl. Phys. A: Mater. Sci. Process. 92(3), 579–587 (2008). [CrossRef]
  11. Korea Patent 10–0727434–00–00.
  12. P. A. Buffat and J. P. Borel, “Size effect on the melting temperature of gold particles,” Phys. Rev. A 13(6), 2287–2298 (1976). [CrossRef]
  13. X. Li, H. Li, J. Liu, X. Qi, and X. Zeng, “Conductive line preparation on resin surfaces by laser micro-cladding conductive pastes,” Appl. Surf. Sci. 233(1-4), 51–57 (2004). [CrossRef]
  14. B. Choi, H. Lee, S. Jin, S. Chun, and S. Kim, “Characterization of the optical properties of silver nanoparticle films,” Nanotechnology 18(7), 075706–075710 (2007). [CrossRef] [PubMed]
  15. S. Sun, L. Zhang, and S. Jahanshahi, “From viscosity and surface tension to marangoni flow in melts,” Metall. Mater. Trans., B, Process Metall. Mater. Proc. Sci. 34(5), 517–523 (2003). [CrossRef]
  16. P. Beckmann, and A. Spizichino, The Scattering of Electromagnetic Waves from Rough Surfaces (Pergamon Press. Oxford. 1963).
  17. M. Aminuzzama, A. Watanabe, and T. Miyashita, “Direct writing of conductive silver micropatterns on flexible polyimide film by laser-induced pyrolysis of silver nanoparticle-dispersed film,” J. Nanopart. Res. 12(3), 931–938 (2010). [CrossRef]
  18. A. C. Siegel, S. T. Phillips, M. D. Dickey, N. Lu, Z. Suo, and G. M. Whitesides, “Foldable Printed Circuit Boards on Paper Substrates,” Adv. Funct. Mater. 20(1), 28–35 (2010). [CrossRef]
  19. M. Pagliaro, R. Ciriminna, and G. Palmisano, “Flexible solar cells,” ChemSusChem 1(11), 880–891 (2008). [CrossRef] [PubMed]
  20. J. A. Rogers, T. Someya, and Y. Huang, “Materials and mechanics for stretchable electronics,” Science 327(5973), 1603–1607 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited