OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 3 — Jan. 31, 2011
  • pp: 2589–2598

Strong coupling between two quantum dots and a photonic crystal cavity using magnetic field tuning

Hyochul Kim, Deepak Sridharan, Thomas C. Shen, Glenn S. Solomon, and Edo Waks  »View Author Affiliations

Optics Express, Vol. 19, Issue 3, pp. 2589-2598 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (906 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate strong coupling between two indium arsenide (InAs) quantum dots (QDs) and a photonic crystal cavity by using a magnetic field as a frequency tuning method. The magnetic field causes a red shift of an exciton spin state in one QD and a blue shift in the opposite exciton spin state of the second QD, enabling them to be simultaneously tuned to the same cavity resonance. This method can match the emission frequency of two QDs separated by detunings as large as 1.35 meV using a magnetic field of up to 7 T. By controlling the detuning between the two QDs we measure the vacuum Rabi splitting (VRS) both when the QDs are individually coupled to the cavity, as well as when they are coupled to the cavity simultaneously. In the latter case the oscillator strength of two QDs shows a collective behavior, resulting in enhancement of the VRS as compared to the individual cases. Experimental results are compared to theoretical calculations based on the solution to the full master equation and found to be in excellent agreement.

© 2011 Optical Society of America

OCIS Codes
(230.3810) Optical devices : Magneto-optic systems
(270.5580) Quantum optics : Quantum electrodynamics
(230.5298) Optical devices : Photonic crystals

ToC Category:
Quantum Optics

Original Manuscript: January 5, 2011
Revised Manuscript: January 15, 2011
Manuscript Accepted: January 19, 2011
Published: January 26, 2011

Hyochul Kim, Deepak Sridharan, Thomas C. Shen, Glenn S. Solomon, and Edo Waks, "Strong coupling between two quantum dots and a photonic crystal cavity using magnetic field tuning," Opt. Express 19, 2589-2598 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot-semiconductor microcavity system," Nature 432, 197-200 (2004). [CrossRef] [PubMed]
  2. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004). [CrossRef] [PubMed]
  3. E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J. M. Gérard, and J. Bloch, "Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity," Phys. Rev. Lett. 95, 067401 (2005). [CrossRef] [PubMed]
  4. E. Waks, and J. Vučković, "Dipole induced transparency in drop-filter cavity-waveguide systems," Phys. Rev. Lett. 96, 153601 (2006). [CrossRef] [PubMed]
  5. D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučković, "Controlling cavity reflectivity with a single quantum dot," Nature 450, 857-861 (2007). [CrossRef] [PubMed]
  6. I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, "Controlled phase shifts with a single quantum dot," Science 320, 769 (2008). [CrossRef] [PubMed]
  7. D. Bouwmeester, A. Ekert, and A. Zeilinger, The Physics of Quantum Information (Springer, 2000).
  8. A. Imamoğlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, "Quantum information processing using quantum dot spins and cavity QED," Phys. Rev. Lett. 83, 4204-4207 (1999). [CrossRef]
  9. J. Metz, M. Trupke, and A. Beige, "Robust entanglement through macroscopic quantum jumps," Phys. Rev. Lett. 97, 040503 (2006). [CrossRef] [PubMed]
  10. Y. F. Xiao, J. Gao, X. B. Zou, J. F. McMillan, X. Yang, Y. L. Chen, Z. F. Han, G. C. Guo, and C. W. Wong, "Coupled quantum electrodynamics in photonic crystal cavities towards controlled phase gate operations," N. J. Phys. 10, 123013 (2008). [CrossRef]
  11. S.-B. Zheng, and G.-C. Guo, "Efficient scheme for two-atom entanglement and quantum information processing in cavity QED," Phys. Rev. Lett. 85, 2392-2395 (2000). [CrossRef] [PubMed]
  12. D. Sridharan, and E. Waks, "Generating entanglement between quantum dots with different resonant frequencies based on dipole-induced transparency," Phys. Rev. A 78, 052321 (2008). [CrossRef]
  13. J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, "Quantum state transfer and entanglement distribution among distant nodes in a quantum network," Phys. Rev. Lett. 78, 3221 (1997). [CrossRef]
  14. A. Serafini, S. Mancini, and S. Bose, "Distributed quantum computation via optical fibers," Phys. Rev. Lett. 96, 010503 (2006). [CrossRef] [PubMed]
  15. S. Reitzenstein, A. Löffler, C. Hofmann, A. Kubanek, M. Kamp, J. P. Reithmaier, A. Forchel, V. D. Kulakovskii, L. V. Keldysh, I. V. Ponomarev, and T. L. Reinecke, "Coherent photonic coupling of semiconductor quantum dots," Opt. Lett. 31, 1738-1740 (2006). [CrossRef] [PubMed]
  16. A. Faraon, D. Englund, I. Fushman, J. Vučković, N. Stoltz, and P. Petroff, "Local quantum dot tuning on photonic crystal chips," Appl. Phys. Lett. 90, 213110 (2007). [CrossRef]
  17. S. Seidl, M. Kroner, A. Hogele, K. Karrai, R. J. Warburton, A. Badolato, and P. M. Petroff, "Effect of uniaxial stress on excitons in a self-assembled quantum dot," Appl. Phys. Lett. 88, 203113 (2006). [CrossRef]
  18. H. Kim, S. M. Thon, P. M. Petroff, and D. Bouwmeester, "Independent tuning of quantum dots in a photonic crystal cavity," Appl. Phys. Lett. 95, 243107 (2009). [CrossRef]
  19. A. Laucht, J. M. Villas-Bôas, S. Stobbe, N. Hauke, F. Hofbauer, G. Böhm, P. Lodahl, M.-C. Amann, M. Kaniber, and J. J. Finley, "Mutual coupling of two semiconductor quantum dots via an optical nanocavity," Phys. Rev. B 82, 075305 (2010). [CrossRef]
  20. H. Kim, D. Sridharan, T. C. Shen, G. S. Solomon, and E. Waks, http://arxiv.org/abs/1101.0749 (2011).
  21. S. Reitzenstein, S. Münch, P. Franeck, A. Rahimi-Iman, A. Löffler, S. Höfling, L. Worschech, and A. Forchel, "Control of the strong light-matter interaction between an elongated In0.3Ga0.7As quantum dot and a micropillar cavity using external magnetic fields," Phys. Rev. Lett. 103, 127401 (2009). [CrossRef] [PubMed]
  22. S. Reitzenstein, S. Münch, P. Franeck, A. Löffler, S. Höfling, L. Worschech, A. Forchel, I. V. Ponomarev, and T. L. Reinecke, "Exciton spin state mediated photon-photon coupling in a strongly coupled quantum dot microcavity system," Phys. Rev. B 82, 121306 (2010). [CrossRef]
  23. J. M. Fink, R. Bianchetti, M. Baur, M. Göppl, L. Steffen, S. Filipp, P. J. Leek, A. Blais, and A. Wallraff, "Dressed collective qubit states and the Tavis-Cummings model in circuit QED," Phys. Rev. Lett. 103, 083601 (2009). [CrossRef] [PubMed]
  24. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "Fine-tuned high-Q photonic-crystal nanocavity," Opt. Express 13, 1202 (2005). [CrossRef] [PubMed]
  25. M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, F. Klopf, and F. Schäfer, "Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots," Phys. Rev. B 65, 195315 (2002).
  26. P. Michler, Single Semiconductor Quantum Dots, (Springer-Verlag Berlin Heidelberg, 2009). [CrossRef]
  27. M. Tavis, and F. W. Cummings, "Exact solution for an N-molecule—radiation-field Hamiltonian," Phys. Rev. 170, 379 (1968). [CrossRef]
  28. M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, "Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot-cavity system," Phys. Rev. Lett. 103, 207403 (2009). [CrossRef]
  29. S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404 (2006). [CrossRef] [PubMed]
  30. U. Hohenester, A. Laucht, M. Kaniber, N. Hauke, A. Neumann, A. Mohtashami, M. Seliger, M. Bichler, and J. J. Finley, "Phonon-assisted transitions from quantum dot excitons to cavity photons," Phys. Rev. B 80, 201311 (2009).
  31. S. M. Tan, "A computational toolbox for quantum and atomic optics," J. Opt. B 1, 424 (1999). [CrossRef]
  32. P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, "Ultralong dephasing time in InGaAs quantum dots," Phys. Rev. Lett. 87, 157401 (2001). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited