OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 3 — Jan. 31, 2011
  • pp: 2599–2607

Fabrication of highly nonlinear germano-silicate glass optical fiber incorporated with PbTe semiconductor quantum dots using atomization doping process and its optical nonlinearity

Seongmin Ju, Pramod R. Watekar, and Won-Taek Han  »View Author Affiliations

Optics Express, Vol. 19, Issue 3, pp. 2599-2607 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1072 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Germano-silicate glass optical fiber incorporated with PbTe semiconductor quantum dots (SQDs) in the core was fabricated by using the atomization process in modified chemical vapor deposition (MCVD) process. The absorption bands attributed to PbTe semiconductor quantum dots in the fiber core were found to appear at around 687 nm and 1055 nm. The nonlinear refractive index measured by the long-period fiber grating (LPG) pair method upon pumping with laser diode at 976.4 nm was estimated to be ~1.5 × 10−16 m2/W.

© 2011 OSA

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2310) Fiber optics and optical communications : Fiber optics
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: January 14, 2011
Manuscript Accepted: January 18, 2011
Published: January 26, 2011

Seongmin Ju, Pramod R. Watekar, and Won-Taek Han, "Fabrication of highly nonlinear germano-silicate glass optical fiber incorporated with PbTe semiconductor quantum dots using atomization doping process and its optical nonlinearity," Opt. Express 19, 2599-2607 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Chowdhury, A. M. P. Hussain, G. A. Ahmed, D. Mohanta, and A. Choudhury, “Third order nonlinear optical response of PbS quantum dots,” Semicond. Phys. Quantum Electron. Optoelectron. 9, 45–48 (2006).
  2. A. M. Malyarevich, M. S. Gaponenko, V. G. Savitski, K. V. Yumashev, G. E. Rachkovskaya, and G. B. Zakharevich, “Nonlinear optical properties of PbS quantum dots in boro-silicate glass,” J. Non-Cryst. Solids 353(11-12), 1195–1200 (2007). [CrossRef]
  3. N. F. Borrelli and D. W. Smith, “Quantum confinement of PbS microcrystals in glass,” J. Non-Cryst. Solids 180(1), 25–31 (1994). [CrossRef]
  4. K. Wundke, S. Pötting, J. Auxier, A. Schülzgen, N. Peyghambarian, and N. F. Borrelli, “PbS quantum-dot-doped glasses for ultrashort-pulse generation,” Appl. Phys. Lett. 76(1), 10–12 (2000). [CrossRef]
  5. J. J. Peterson and T. D. Krauss, “Fluorescence spectroscopy of single lead sulfide quantum dots,” Nano Lett. 6(3), 510–514 (2006). [CrossRef] [PubMed]
  6. S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005). [CrossRef] [PubMed]
  7. E. J. D. Klem, L. Levina, and E. H. Sargent, “PbS quantum dot electroabsorption modulation across the extended communications band 1200 - 1700 nm,” Appl. Phys. Lett. 87(5), 053101 (2005). [CrossRef]
  8. L. Bakueva, S. Musikhin, M. A. Hines, T.-W. F. Chang, M. Tzolov, G. D. Scholes, and E. H. Sargent, “Size-tunable infrared (1000–1600 nm) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer,” Appl. Phys. Lett. 82(17), 2895–2897 (2003). [CrossRef]
  9. M. A. Hines and G. D. Scholes, “Colloidal PbS nanocrystals with size-tunable near-infrared emission: Observation of post-synthesis self-narrowing of the particle size distribution,” Adv. Mater. (Deerfield Beach Fla.) 15(21), 1844–1849 (2003). [CrossRef]
  10. E. Lifshitz, M. Sirota, and H. Porteanu, “Continuous and time-resolved photoluminescence study of lead sulfide nanocrystals, ebmedded in polymer film,” J. Cryst. Growth 196(1), 126–134 (1999). [CrossRef]
  11. S.-M. Lee, Y.-W. Jun, S.-N. Cho, and J. Cheon, “Single-crystalline star-shaped nanocrystals and their evolution: programming the geometry of nano-building blocks,” J. Am. Chem. Soc. 124(38), 11244–11245 (2002). [CrossRef] [PubMed]
  12. I. Kang and F. W. Wise, “Electronic structure and optical properties of PbS and PbSe quantum dots,” J. Opt. Soc. Am. B 14(7), 1632–1646 (1997). [CrossRef]
  13. P. R. Watekar, S. Ju, and W.-T. Han, “Resonant optical nonlinearity of PbSe quantum dots doped optical fiber,” in Proceedings of 2008 IEEE/LEOS Winter Topical Meetings, (Academic, Sorrento, Italy, 2008), WB1.3, 88–89 (2008).
  14. P. R. Watekar, A. Lin, S. Ju, and W.-T. Han, “1537 nm emission upon 980 nm pumping in PbSe quantum dots doped optical fiber,” in Proceedings of OFC/NFOEC 2008, (Academic, San Diego, California, USA, 2008), OWO1, 1–3 (2008).
  15. P. R. Watekar, S. Ju, A. Lin, M. J. Kim, B. H. Lee, and W.-T. Han, “Linear and nonlinear optical properties of the PbSe quantum dots doped germane-silica glass optical fiber,” J. Non-Cryst. Solids 356(44-49), 2384–2388 (2010), doi:. [CrossRef]
  16. A. Lipovskii, E. Kolobkova, V. Petrikov, I. Kang, A. Olkhovets, T. Krauss, M. Thomas, J. Silcox, F. Wise, Q. Shen, and S. Kycia, “Synthesis and characterization of PbSe quantum dots in phosphate glass,” Appl. Phys. Lett. 71(23), 3406–3408 (1997). [CrossRef]
  17. M. Haurylau, J. Zhang, S. M. Weiss, P. M. Fauchet, D. V. Martyshkin, V. I. Rupasov, and S. G. Krivoshlykov, “Nonlinear optical response of photonic bandgap structures containing PbSe quantum dots,” J. Photochem. Photobiol. Chem. 183(3), 329–333 (2006). [CrossRef]
  18. D. V. Talapin and C. B. Murray, “PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors,” Science 310(5745), 86–89 (2005). [CrossRef] [PubMed]
  19. M. Brumer, M. Sirota, A. Kigel, A. Sashchiuk, E. Galun, Z. Burshtein, and E. Lifshitz, “Nanocrystals of PbSe core, PbSe/PbS, and PbSe/PbSxS(1-x) core/shell as saturable absorbers in passively Q-switched near-infrared lasers,” Appl. Opt. 45(28), 7488–7497 (2006). [CrossRef] [PubMed]
  20. C. B. Murray, S. Sun, W. Gaschler, H. Doyle, T. A. Betley, and C. R. Kagan, “Colloidal synthesis of nanocrystals and nanocrystal superlattices,” IBM J. Res. Develop. 45(1), 47–56 (2001). [CrossRef]
  21. H. Du, C. Chen, R. Krishnan, T. D. Krauss, J. M. Harbold, F. W. Wise, M. G. Thomas, and J. Silcox, “Optical properties of colloidal PbSe nanocrystals,” Nano Lett. 2(11), 1321–1324 (2002). [CrossRef]
  22. J. M. Pietryga, R. D. Schaller, D. Werder, M. H. Stewart, V. I. Klimov, and J. A. Hollingsworth, “Pushing the band gap envelope: mid-infrared emitting colloidal PbSe quantum dots,” J. Am. Chem. Soc. 126(38), 11752–11753 (2004). [CrossRef] [PubMed]
  23. B. L. Wehrenberg, C. J. Wang, and P. Guyot-Sionnest, “Interband and intraband optical studies of PbSe colloidal quantum dots,” J. Phys. Chem. B 106(41), 10634–10640 (2002). [CrossRef]
  24. E. Lifshitz, M. Bashouti, V. Kloper, A. Kigel, M. S. Eisen, and S. Berger, “Synthesis and characterization of PbSe quantum wires, multipods, quantum rods, and cubes,” Nano Lett. 3(6), 857–862 (2003). [CrossRef]
  25. A. Sashchiuk, L. Amirav, M. Bashouti, M. Krueger, U. Sivan, and E. Lifshitz, “PbSe nanocrystal assemblies: synthesis and structural, optical, and electrical characterization,” Nano Lett. 4(1), 159–165 (2004). [CrossRef]
  26. G. J. Jacob, L. C. Barbosa, and C. L. Cesar, “Tellurite glass optical fiber doped with PbTe quantum dots,” in Proceedings of SPIE (Academic, San José, CA, USA, 2005), 5734, 124–129 (2005).
  27. E. Rodriguez, G. Kellermann, A. F. Craievich, E. Jimenez, C. L. César, and L. C. Barbosa, “All-optical switching device for infrared based on PbTe quantum dots,” Superlattices Microstruct. 43(5-6), 626–634 (2008). [CrossRef]
  28. S. Ju, P. R. Watekar, C. J. Kim, and W.-T. Han, “Effect of heat treatment on optical characteristics of highly nonlinear optical fiber doped with PbTe semiconductor quantum dots,” in Proceedings of NPIS 2005 (Academic, San Diego, California, USA, 2005), NFB4, 1–3 (2005).
  29. J. Jo, U.-C. Paek, W.-T. Han, and J. Heo, “Fabrication and heat treatment effects on absorption characteristics of glass fibers doped with PbTe semiconductor quantum dots,” in Proceedings of the Optical Fiber Communication Conference and Exhibit (Academic, Anaheim, CA, USA, 2001), ThC4, 1–3 (2001).
  30. W.-T. Han, and Y. H. Kim, “Linear and nonlinear optical properties of optical fibers containing PbTe quantum dots for all optical switching application,” in Proceedings of the 2nd International Korea-China Symposium on Glass-Ceramics (Academic, Shanghai, China, 2002), 34–40 (2002).
  31. W. Lu, J. Fang, K. L. Stokes, and J. Lin, “Shape evolution and self assembly of monodisperse PbTe nanocrystals,” J. Am. Chem. Soc. 126(38), 11798–11799 (2004). [CrossRef] [PubMed]
  32. J. E. Murphy, M. C. Beard, A. G. Norman, S. P. Ahrenkiel, J. C. Johnson, P. Yu, O. I. Mićić, R. J. Ellingson, and A. J. Nozik, “PbTe colloidal nanocrystals: synthesis, characterization, and multiple exciton generation,” J. Am. Chem. Soc. 128(10), 3241–3247 (2006). [CrossRef] [PubMed]
  33. A. L. Rogach, A. Eychmüller, S. G. Hickey, and S. V. Kershaw, “Infrared-emitting colloidal nanocrystals: synthesis, assembly, spectroscopy, and applications,” Small 3(4), 536–557 (2007). [CrossRef] [PubMed]
  34. L. L. Beecroft and C. K. Ober, “Nanocomposite materials for optical applications,” Chem. Mater. 9(6), 1302–1317 (1997). [CrossRef]
  35. V. C. S. Reynoso, A. M. de Paula, R. F. Cuevas, J. A. Medeiros Neto, O. L. Alves, C. L. Cesar, and L. C. Barbosa, “PbTe quantum dot doped glasses with absorption edge in the 1.5 μm wavelength region,” Electron. Lett. 31(12), 1013–1014 (1995). [CrossRef]
  36. U. Woggen, Optical properties of semiconductor quantum dots, (Springer-Verlag Berlin, 1997).
  37. R. Dalven, “A review of the semiconductor properties of PbTe, PbSe, PbS and PbO,” Infrared Phys. 9(4), 141–184 (1969). [CrossRef]
  38. F. W. Wise, “Lead salt quantum dots: the limit of strong quantum confinement,” Acc. Chem. Res. 33(11), 773–780 (2000). [CrossRef] [PubMed]
  39. V. I. Klimov, “Optical nonlinearities and ultrafast carrier dynamics in semiconductor nanocrystals,” J. Phys. Chem. B 104(26), 6112–6123 (2000). [CrossRef]
  40. E. M. Vogel, M. J. Weber, and D. M. Krol, “Nonlinear optical phenomena in glass,” Phys. Chem. Glasses 32, 231–254 (1991).
  41. Y. H. Kim, U.-C. Paek, and W.-T. Han, “All-optical 2×2 switching with two independent Yb3+-doped nonlinear optical fibers with a long-period fiber grating pair,” Appl. Opt. 44(15), 3051–3057 (2005). [CrossRef] [PubMed]
  42. M. Asobe, “Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching,” Opt. Fiber Technol. 3(2), 142–148 (1997). [CrossRef]
  43. R. H. Pantell and M. J. F. Digonnet, “A model of nonlinear all-optical switching in doped fibers,” J. Lightwave Technol. 12(1), 149–156 (1994). [CrossRef]
  44. M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, and R. H. Pantell, “Resonantly enhanced nonlinearity in doped fibers for low-power all-optical switching: a review,” Opt. Fiber Technol. 3(1), 44–64 (1997). [CrossRef]
  45. G. M. Tosi-Beleffi, F. Curti, D. M. Forin, and F. Matera, “Polarization independent wavelength converter based on Kerr non-linearity in DS fiber,” Opt. Commun. 229(1-6), 187–190 (2004). [CrossRef]
  46. B.-E. Olsson, P. Öhlén, L. Rau, and D. J. Blumenthal, “A simple and robust 40-Gb/s wavelength converter using fiber cross-phase modulation and optical filtering,” IEEE Photon. Technol. Lett. 12(7), 846–848 (2000). [CrossRef]
  47. M. E. Marhic, Y. Park, F. S. Yang, and L. G. Kazovsky, “Broadband fiber-optical parametric amplifiers and wavelength converters with low-ripple Chebyshev gain spectra,” Opt. Lett. 21(17), 1354–1356 (1996). [CrossRef] [PubMed]
  48. R. R. Alfano, The supercontinuum laser source: fundamentals with updated references, 2nd ed., (Springer-Verlag, 2006).
  49. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25(1), 25–27 (2000). [CrossRef]
  50. G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, “Frontiers in ultrashort pulse generation: pushing the limits in linear and nonlinear optics,” Science 286(5444), 1507–1512 (1999). [CrossRef] [PubMed]
  51. M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84(26), 6010–6013 (2000). [CrossRef] [PubMed]
  52. G. P. Agrawal, Nonlinear fiber optics, 4th ed., (Academic Press, 2007).
  53. D. Dahan and G. Eisenstein, “Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering,” Opt. Express 13(16), 6234–6249 (2005). [CrossRef] [PubMed]
  54. Y. H. Kim, B. H. Lee, Y. Chung, U. C. Paek, and W.-T. Han, “Resonant optical nonlinearity measurement of Yb(3+) / Al(3+) codoped optical fibers by use of a long-period fiber grating pair,” Opt. Lett. 27(8), 580–582 (2002). [CrossRef]
  55. P. R. Watekar, S. Moon, A. Lin, S. Ju, and W.-T. Han, “Linear and nonlinear optical properties of Si nanoparticles/ Er-ions doped optical fiber,” J. Lightwave Technol. 27(5), 568–575 (2009). [CrossRef]
  56. S. D. Jackson and Y. Li, “Multiwavelength diode-cladding-pumped Nd3+-doped germao-aluminosilicate fiber laser,” IEEE J. Quantum Electron. 39(9), 1118–1122 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited