OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 3 — Jan. 31, 2011
  • pp: 2619–2625

Large mode splitting and lasing in optimally coupled photonic-crystal microcavities

Kirill A. Atlasov, Alok Rudra, Benjamin Dwir, and Eli Kapon  »View Author Affiliations

Optics Express, Vol. 19, Issue 3, pp. 2619-2625 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2560 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Coupling of L-type photonic-crystal (PhC) cavities in a geometry that follows inherent cavity field distribution is exploited for demonstrating large mode splitting of up to ~10-20 nm (~15-30 meV) near 1µm wavelength. This is much larger than the disorder-induced cavity detuning for conventional PhC technology, which ensures reproducible coupling. Furthermore, a microlaser based on such optimally coupled PhC cavities and incorporating quantum wire gain medium is demonstrated, with potential applications in fast switching and modulation.

© 2011 OSA

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(140.3945) Lasers and laser optics : Microcavities
(230.4555) Optical devices : Coupled resonators

ToC Category:
Lasers and Laser Optics

Original Manuscript: November 18, 2010
Revised Manuscript: December 17, 2010
Manuscript Accepted: December 21, 2010
Published: January 27, 2011

Kirill A. Atlasov, Alok Rudra, Benjamin Dwir, and Eli Kapon, "Large mode splitting and lasing in optimally coupled photonic-crystal microcavities," Opt. Express 19, 2619-2625 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003). [CrossRef] [PubMed]
  2. M. J. Hartmann, F. G. S. L. Brandão, and M. B. Plenio, “Strongly interacting polaritons in coupled arrays of cavities,” Nat. Phys. 2(12), 849–855 (2006). [CrossRef]
  3. D. Gerace, H. E. Tureci, A. Imamoglu, V. Giovannetti, and R. Fazio, “The quantum-optical Josephson interferometer,” Nat. Phys. 5(4), 281–284 (2009). [CrossRef]
  4. J. L. O'Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photonics 3(12), 687–695 (2009). [CrossRef]
  5. D. O’Brien, M. D. Settle, T. Karle, A. Michaeli, M. Salib, and T. F. Krauss, “Coupled photonic crystal heterostructure nanocavities,” Opt. Express 15(3), 1228–1233 (2007). [CrossRef] [PubMed]
  6. L. D. A. Lundeberg, D. L. Boiko, and E. Kapon, “Coupled islands of photonic crystal heterostructures implemented with vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 87(24), 241120 (2005). [CrossRef]
  7. H. Altug, D. Englund, and J. Vučković, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys. 2(7), 484–488 (2006). [CrossRef]
  8. S. V. Zhukovsky, D. N. Chigrin, A. V. Lavrinenko, and J. Kroha, “Switchable lasing in multimode microcavities,” Phys. Rev. Lett. 99(7), 073902 (2007). [CrossRef] [PubMed]
  9. A. Golshani, H. Pier, E. Kapon, and M. Moser, “Photon mode localization in disordered arrays of vertical cavity surface emitting lasers,” J. Appl. Phys. 85(4), 2454–2456 (1999). [CrossRef]
  10. L. Mutter, V. Iakovlev, A. Caliman, A. Mereuta, A. Sirbu, and E. Kapon, “1.3 microm-wavelength phase-locked VCSEL arrays incorporating patterned tunnel junction,” Opt. Express 17(10), 8558–8566 (2009). [CrossRef] [PubMed]
  11. K. A. Atlasov, M. Felici, K. F. Karlsson, P. Gallo, A. Rudra, B. Dwir, and E. Kapon, “1D photonic band formation and photon localization in finite-size photonic-crystal waveguides,” Opt. Express 18(1), 117–122 (2010). [CrossRef] [PubMed]
  12. H. Pier and E. Kapon, “Photon localization in lattices of coupled vertical-cavity surface-emitting lasers with dimensionalities between one and two,” Opt. Lett. 22(8), 546–548 (1997). [CrossRef] [PubMed]
  13. G. Biasiol, F. Reinhardt, A. Gustafsson, and E. Kapon, “Self-limiting OMCVD growth of GaAs on V-grooved substrates with application to InGaAs/GaAs quantum wires,” J. Electron. Mater. 26(10), 1194–1198 (1997). [CrossRef]
  14. K. A. Atlasov, K. F. Karlsson, A. Rudra, B. Dwir, and E. Kapon, “Wavelength and loss splitting in directly coupled photonic-crystal defect microcavities,” Opt. Express 16(20), 16255–16264 (2008). [CrossRef] [PubMed]
  15. S. Vignolini, F. Intonti, M. Zani, F. Riboli, D. S. Wiersma, L. H. Li, L. Balet, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Near-field imaging of coupled photonic-crystal microcavities,” Appl. Phys. Lett. 94(15), 151103 (2009). [CrossRef]
  16. Q. Zhu, K. F. Karlsson, M. Byszewski, A. Rudra, E. Pelucchi, Z. He, and E. Kapon, “Hybridization of electron and hole states in semiconductor quantum-dot molecules,” Small 5(3), 329–335 (2009). [CrossRef] [PubMed]
  17. K. A. Atlasov, P. Gallo, A. Rudra, B. Dwir, and E. Kapon, “Effect of sidewall passivation in BCl3/N2 inductively coupled plasma etching of two-dimensional GaAs photonic crystals,” J. Vac. Sci. Technol. B 27(5), L21–L24 (2009). [CrossRef]
  18. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003). [CrossRef] [PubMed]
  19. A. Surrente, P. Gallo, M. Felici, B. Dwir, A. Rudra, and E. Kapon, “Dense arrays of ordered pyramidal quantum dots with narrow linewidth photoluminescence spectra,” Nanotechnology 20(41), 415205 (2009). [CrossRef] [PubMed]
  20. K. A. Atlasov, M. Calic, K. F. Karlsson, P. Gallo, A. Rudra, B. Dwir, and E. Kapon, “Photonic-crystal microcavity laser with site-controlled quantum-wire active medium,” Opt. Express 17(20), 18178–18183 (2009). [CrossRef] [PubMed]
  21. G. Bjork and Y. Yamamoto, “Analysis of semiconductor microcavity lasers using rate equations,” IEEE J. Quantum Electron. 27(11), 2386–2396 (1991). [CrossRef]
  22. H. E. Türeci, A. D. Stone, and L. Ge, “Theory of the spatial structure of nonlinear lasing modes,” Phys. Rev. A 76(1), 013813 (2007). [CrossRef]
  23. S. V. Zhukovsky, D. N. Chigrin, and J. Kroha, “Bistability and mode interaction in microlasers,” Phys. Rev. A 79(3), 033803 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited