OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 3 — Jan. 31, 2011
  • pp: 2643–2648

Polarization modulation thermal lens microscopy for imaging the orientation of non-spherical nanoparticles

Jing Zhang, Yu Huang, Chin-Jung Chuang, Mariya Bivolarska, Chung W See, Michael G Somekh, and Mark C Pitter  »View Author Affiliations

Optics Express, Vol. 19, Issue 3, pp. 2643-2648 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1081 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Abstract: In this paper a far field optical technique we call polarization modulation thermal lens microscopy (PM-TLM) is used for imaging the orientation and dichroism of non-spherical nanoparticles. In PM-TLM, the polarization state of a pump beam is periodically modulated which in turn causes morphology related intensity fluctuations in a continuous probe beam, thus allowing high signal to noise ratio detection with using lock-in amplification. Since PM-TLM uses nanoparticle absorption as the contrast mechanism, it may be used to detect and image nanoparticles of far smaller dimensions than can be observed by conventional dark field optical microscopy. The technique, its implementation and experiment results are presented.

© 2011 OSA

OCIS Codes
(110.0110) Imaging systems : Imaging systems
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(180.0180) Microscopy : Microscopy
(260.5430) Physical optics : Polarization
(350.5340) Other areas of optics : Photothermal effects

ToC Category:

Original Manuscript: November 30, 2010
Revised Manuscript: January 14, 2011
Manuscript Accepted: January 16, 2011
Published: January 27, 2011

Virtual Issues
Vol. 6, Iss. 2 Virtual Journal for Biomedical Optics

Jing Zhang, Yu Huang, Chin-Jung Chuang, Mariya Bivolarska, Chung W See, Michael G Somekh, and Mark C Pitter, "Polarization modulation thermal lens microscopy for imaging the orientation of non-spherical nanoparticles," Opt. Express 19, 2643-2648 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Qian, T. Fu, Q. Zhan, and S. He, “Using Some Nanoparticles as Contrast Agents for Optical Bioimaging,” IEEE J. Sel. Top. Quantum Electron. 16(3), 672–684 (2010). [CrossRef]
  2. J. T. Hu, W. D. Li Ls, L. Yang, Manna, Wang Lw, and A. P. Alivisatos, “Linearly polarized emission from colloidal semiconductor quantum rods,” Science 292(5524), 2060–2063 (2001). [CrossRef] [PubMed]
  3. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006). [CrossRef] [PubMed]
  4. M. Franko and C. D. Tran, “Analytical thermal lens instrumentation,” Rev. Sci. Instrum. 67(1), 1–18 (1996). [CrossRef]
  5. S. Berciaud, D. Lasne, G. A. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: Theory versus experiment,” Phys. Rev. B 73(4), 045424 (2006). [CrossRef]
  6. D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, “Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells,” Biophys. J. 91(12), 4598–4604 (2006). [CrossRef] [PubMed]
  7. D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297(5584), 1160–1163 (2002). [CrossRef] [PubMed]
  8. X. H. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006). [CrossRef] [PubMed]
  9. N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007). [CrossRef] [PubMed]
  10. C. Yu and J. Irudayaraj, “Multiplex biosensor using gold nanorods,” Anal. Chem. 79(2), 572–579 (2007). [CrossRef] [PubMed]
  11. M. Yamauchi, K. Mawatari, A. Hibara, M. Tokeshi, and T. Kitamori, “Circular dichroism thermal lens microscope for sensitive chiral analysis on microchip,” Anal. Chem. 78(8), 2646–2650 (2006). [CrossRef] [PubMed]
  12. W. S. Chang, J. W. Ha, L. S. Slaughter, and S. Link, “Plasmonic nanorod absorbers as orientation sensors,” Proc. Natl. Acad. Sci. U.S.A. 107(7), 2781–2786 (2010). [CrossRef] [PubMed]
  13. D. R. Snook and R. D. Lowe, “Thermal Lens Spectrometry- A Review,” Analyst (Lond.) 120(8), 2051–2068 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited