OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 3 — Jan. 31, 2011
  • pp: 2729–2738

Laterally-current-injected light-emitting diodes based on nanocrystalline-Si/SiO2 superlattice

L. Ding, M. B. Yu, Xiaoguang Tu, G. Q. Lo, S. Tripathy, and T. P. Chen  »View Author Affiliations

Optics Express, Vol. 19, Issue 3, pp. 2729-2738 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1275 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Laterally electrically-pumped Si light-emitting diodes (LEDs) based on truncated nanocrystalline-Si (nc-Si)/SiO2 quantum wells are fabricated with complementary-metal-semiconductor-oxide (CMOS) process. Visible electroluminescence (EL) can be observed under a reverse bias larger than ~6 V. The light emission would probably originate from the spontaneous hot-carrier relaxations within the conduction and the valance bands when the device is sufficiently reverse-biased. The EL spectral profile is found to be modulated by varying structure parameters of the interdigitated finger electrodes. Up to ~20 times EL intensity enhancement is achieved as compared to vertical-current-injection LED prepared using the same material system. Based on the lateral-current-injection scheme, a Si/SiO2 MQW LED with Fabry-Perot (FP) microcavity and an on-chip waveguided LED that emits at 1.55-µm are proposed.

© 2011 OSA

OCIS Codes
(040.4200) Detectors : Multiple quantum well
(230.3670) Optical devices : Light-emitting diodes
(260.3800) Physical optics : Luminescence

ToC Category:
Optical Devices

Original Manuscript: August 6, 2010
Revised Manuscript: November 29, 2010
Manuscript Accepted: December 20, 2010
Published: January 28, 2011

Virtual Issues
Vol. 6, Iss. 2 Virtual Journal for Biomedical Optics

L. Ding, M. B. Yu, Xiaoguang Tu, G. Q. Lo, S. Tripathy, and T. P. Chen, "Laterally-current-injected light-emitting diodes based on nanocrystalline-Si/SiO2 superlattice," Opt. Express 19, 2729-2738 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. 57(10), 1046–1048 (1990). [CrossRef]
  2. V. Svrcek, D. Mariotti, and M. Kondo, “Ambient-stable blue luminescent silicon nanocrystals prepared by nanosecond-pulsed laser ablation in warter,” Opt. Express 17, 521–527 (2010).
  3. X. Sun, J. Liu, L. C. Kimerling, and J. Michel, “Room-temperature direct bandgap electroluminesence from Ge-on-Si light-emitting diodes,” Opt. Lett. 34(8), 1198 (2009). [CrossRef] [PubMed]
  4. L. Ding, T. P. Chen, M. Yang, J. I. Wong, Z. Cen, Y. Liu, F. Zhu, and A. A. Tseng, “Relationship between current transport and electroluminescence in Si+-implanted SiO2 thin films,” IEEE Trans. Electron. Dev. 56(11), 2785–2791 (2009). [CrossRef]
  5. W. K. Tan, M. B. Yu, Q. Chen, J. D. Ye, G. Q. Lo, and D. L. Kwong, “Re light emission from controlled multilayer stack comprising of thin amorphous silicon and silicon nitride layers,” Appl. Phys. Lett. 90(22), 221103 (2007). [CrossRef]
  6. W. K. Tan, M. B. Yu, Q. Chen, W. Y. Loh, J. D. Ye, Z. H. Zhang, G. Q. Lo, and D.-L. Kwong, “Thin amorphous Si/Si3N4-based light emitting device prepared with low thermal budget,” IEEE Electron Device Lett. 29(3), 228–231 (2008). [CrossRef]
  7. A. Anopchenko, A. Marconi, E. Moser, S. Prezioso, M. Wang, L. Pavesi, G. Pucker, and P. Bellutti, “Low-voltage onset of electroluminescence in nanocrystalline-Si/SiO2 multilayers,” J. Appl. Phys. 106(3), 033104 (2009). [CrossRef]
  8. T. Creazzo, B. Redding, E. Marchena, J. Murakowski, and D. W. Prather, “Pulsed pumping of silicon nanocrystal light emitting devices,” Opt. Express 18(11), 10924–10930 (2010). [CrossRef] [PubMed]
  9. M. Wang, A. Anopchenko, A. Marconi, E. Moser, S. Prezioso, L. Pavesi, G. Pucker, P. Bellutti, and L. Vanzetti, “Light emitting devices based on nanocrystalline-silicon multilayer structure,” Physica E 41(6), 912–915 (2009). [CrossRef]
  10. R. Tsu, “Silicon based quantum wells,” Nature 364(6432), 19 (1993). [CrossRef]
  11. N. Tessler, and G. Eisenstein, “Transient carrier response in multiple quantum well lasers,” in Proceeding of 13th IEEE Semicon. Laser Conf. pp. 44–45 (1992).
  12. M. Zacharias, J. Bläsing, P. Veit, L. Tsybeskov, K. Hirschman, and P. M. Fauchet, “Thermal crystallization of amorphous Si/SiO2 superlattice,” Appl. Phys. Lett. 74(18), 2614–2616 (1999). [CrossRef]
  13. M. Freitag, V. Perebeinos, J. Chen, A. Stein, J. C. Tsang, J. A. Misewich, R. Martel, and P. Avouris, “Hot carrier electroluminescence from a single carbon nanotube,” Nano Lett. 4(6), 1063–1066 (2004). [CrossRef]
  14. C. W. Liu, S. T. Chang, W. T. Liu, M.-J. Chen, and C.-F. Lin, “Hot carrier recombination model of visible electroluminescence from metal-oxide-silicon tunneling diodes,” Appl. Phys. Lett. 77(26), 4347–4349 (2000). [CrossRef]
  15. A. L. Lacaita, F. Zappa, S. Bigliardi, and M. Manfredi, “On the Bremsstrahlung origin of hot-carrier-induced photons in Silicon device,” IEEE Tran. Electron Device 40(3), 577–582 (1993). [CrossRef]
  16. J. Bude, N. Sano, and A. Yoshii, “Hot-carrier luminescence in Si,” Phys. Rev. B Condens. Matter 45(11), 5848–5856 (1992). [CrossRef] [PubMed]
  17. B. K. Ridley, “Hot electrons in low-dimensional structures,” Rep. Prog. Phys. 54(2), 169–256 (1991). [CrossRef]
  18. H. Aharoni and M. du Plessis, “Low-operating-voltage integrated silicon light-emitting devices,” IEEE J. Quantum Electron. 40(5), 557–563 (2004). [CrossRef]
  19. M. A. Green, J. Zhao, A. Wang, P. J. Reece, and M. Gal, “Efficient silicon light-emitting diodes,” Nature 412(6849), 805–808 (2001). [CrossRef] [PubMed]
  20. T. Trupke, J. Zhao, A. Wang, R. Corkish, and M. A. Green, “Very efficient light emission from bulk crystalline silicon,” Appl. Phys. Lett. 82(18), 2996–2998 (2003). [CrossRef]
  21. S. Sze, Physics of Semiconductor Devices, (Wiley, New York, 1981), pp 45–47.
  22. S. Boninelli, F. Iacona, G. Franzo, C. Bongiorno, C. Spinella, and F. Priolo, “Thermal evolution and photoluminescence properties of nanometric Si layers,” Nanotechnology 16(12), 3012–3016 (2005). [CrossRef]
  23. S. Fujita and N. Sugiyama, “Visible light-emitting devices with Schottky contacts on an ultrathin amorphous silicon layer containing silicon nanocrystals,” Appl. Phys. Lett. 74(2), 308–310 (1999). [CrossRef]
  24. P. Photopoulos and A. G. Nassiopoulou, “Room- and low-temperature voltage tunable electroluminescence from a single layer of silicon quantum dots in between two thin SiO2 layers,” Appl. Phys. Lett. 77(12), 1816–1818 (2000). [CrossRef]
  25. S. Prezioso, A. Anopchenko, Z. Gaburro, L. Pavesi, G. Pucker, L. Vanzetti, and P. Bellutti, “Electrical conduction and electroluminescence in nanocrystalline silicon-based light emitting devices,” J. Appl. Phys. 104(6), 063103 (2008). [CrossRef]
  26. A. Muscara, M. E. Castagna, S. Leonardi, S. Coffa, L. Caristia, and S. Lorenti, “Design and electro-optical characterization of Si-based resonant cavity light emitting devices at 850 nm,” J. Lumin. 121(2), 293–297 (2006). [CrossRef]
  27. C. D. Presti, A. Irrera, G. Franzò, I. Crupi, F. Priolo, F. Iacona, G. Di Stefano, A. Piana, D. Sanfilippo, and P. G. Fallica, “Photonic-crystal silicon nanoclusters light-emitting device,” Appl. Phys. Lett. 88(3), 033501 (2006). [CrossRef]
  28. F. Giorgis, “Optical microcavities based on amorphous silicon-nitride Fabry-Perot structures,” Appl. Phys. Lett. 77(4), 522–524 (2000). [CrossRef]
  29. C. A. Barrios and M. Lipson, “Electrically driven silicon resonant light emitting device based on slot-waveguide,” Opt. Express 13(25), 10092–10101 (2005). [CrossRef] [PubMed]
  30. F. Iacona, D. Pacifici, A. Irrera, M. Miritello, G. Franzò, F. Priolo, D. Sanfilippo, G. Di Stefano, and P. G. Fallica, “Electroluminescence at 1.54 µm in Er-doped Si nanoclusters-based devices,” Appl. Phys. Lett. 81(17), 3242–3244 (2002). [CrossRef]
  31. S. Yerci, R. Li, and L. Dal Negro, “Electroluminescence from Er-doped Si-rich silicon nitride light emitting diodes,” Appl. Phys. Lett. 97(8), 081109 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited