OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 3 — Jan. 31, 2011
  • pp: 2754–2772

Collective electric and magnetic plasmonic resonances in spherical nanoclusters

Andrea Vallecchi, Matteo Albani, and Filippo Capolino  »View Author Affiliations

Optics Express, Vol. 19, Issue 3, pp. 2754-2772 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (3616 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report an investigation on the optical properties of three-dimensional nanoclusters (NCs) made by spherical constellations of metallic nanospheres arranged around a central dielectric sphere, which can be realized and assembled by current state-of-the-art nanochemistry techniques. This type of NCs supports collective plasmon modes among which the most relevant are those associated with the induced electric and magnetic resonances. Combining a single dipole approximation for each nanoparticle and the multipole spherical-wave expansion of the scattered field, we achieve an effective characterization of the optical response of individual NCs in terms of their scattering, absorption, and extinction efficiencies. By this approximate model we analyze a few sample NCs identifying the electric and magnetic resonance frequencies and their dependence on the size and number of the constituent nanoparticles. Furthermore, we discuss the effective electric and magnetic polarizabilities of the NCs, and their isotropic properties. A homogenization method based on an extension of the Maxwell Garnett model to account for interaction effects due to higher order multipoles in dense packed arrays is applied to a distribution of NCs showing the possibility of obtaining metamaterials with very large, small, and negative values of permittivity and permeability, and even negative index.

© 2011 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(160.1245) Materials : Artificially engineered materials
(260.2065) Physical optics : Effective medium theory
(350.3618) Other areas of optics : Left-handed materials
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: November 8, 2010
Revised Manuscript: January 18, 2011
Manuscript Accepted: January 18, 2011
Published: January 28, 2011

Virtual Issues
Vol. 6, Iss. 2 Virtual Journal for Biomedical Optics

Andrea Vallecchi, Matteo Albani, and Filippo Capolino, "Collective electric and magnetic plasmonic resonances in spherical nanoclusters," Opt. Express 19, 2754-2772 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. Ponsinet, A. Aradian, P. Barois, and S. Ravaine, “Self-assembly and nanochemistry techniques towards the fabrication of metamaterials,” in Applications of Metamaterials, Ed. F. Capolino, CRC Press, Boca Raton, FL, 2009, Chap. 32.
  2. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  3. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005). [CrossRef] [PubMed]
  4. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006). [CrossRef] [PubMed]
  5. Q. Xu, R. M. Rioux, M. D. Dickey, and G. M. Whitesides, “Nanoskiving: a new method to produce arrays of nanostructures,” Acc. Chem. Res. 41(12), 1566–1577 (2008). [CrossRef] [PubMed]
  6. H. O. Moser, B. D. F. Casse, O. Wilhelmi, and B. T. Saw, “Terahertz response of a microfabricated rod-split-ring-resonator electromagnetic metamaterial,” Phys. Rev. Lett. 94(6), 063901 (2005). [CrossRef] [PubMed]
  7. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7(1), 31–37 (2008). [CrossRef]
  8. V. M. Shalaev, W. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30(24), 3356–3358 (2005). [CrossRef]
  9. G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Opt. Lett. 32(1), 53–55 (2007). [CrossRef]
  10. A. Alù, A. Salandrino, and N. Engheta, “Negative effective permeability and left-handed materials at optical frequencies,” Opt. Express 14(4), 1557–1567 (2006). [CrossRef] [PubMed]
  11. Y. A. Urzhumov, G. Shvets, J. A. Fan, F. Capasso, D. Brandl, and P. Nordlander, “Plasmonic nanoclusters: a path towards negative-index metafluids,” Opt. Express 15(21), 14129–14145 (2007). [CrossRef] [PubMed]
  12. C. R. Simovski and S. A. Tretyakov, “Model of isotropic resonant magnetism in the visible range based on core-shell clusters,” Phys. Rev. B 79(4), 045111 (2009). [CrossRef]
  13. A. Alù and N. Engheta, “The quest for magnetic plasmons at optical frequencies,” Opt. Express 17(7), 5723–5730 (2009). [CrossRef] [PubMed]
  14. J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010). [CrossRef] [PubMed]
  15. C. F. Bohren, and D. R. Huffman, Absorption and scattering of light by small particles (Wiley, New York, 1983).
  16. S. Steshenko, and F. Capolino, “Single dipole approximation for modeling collections of nanoscatterers” in Theory and Phenomena of Metamaterials, Ed. F. Capolino, (CRC Press, Boca Raton, FL, 2009), Chap. 8.
  17. J. E. Hansen, Spherical Near-Field Antenna Measurements (Peter Peregrinus Ltd, London, 1988).
  18. J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-assembled monolayers of thiolates on metals as a form of nanotechnology,” Chem. Rev. 105(4), 1103–1169 (2005). [CrossRef] [PubMed]
  19. J. Israelachvili, Intermolecular and surface forces, Academic Press (2007).
  20. S. Reculusa, C. Poncet-Legrand, S. Ravaine, C. Mingotaud, E. Duguet, and E. Bourgeat-Lami, “Synthesis of raspberry-like silica/polystyrene materials,” Chem. Mater. 14(5), 2354–2359 (2002). [CrossRef]
  21. J.-C. Taveau, D. Nguyen, A. Perro, S. Ravaine, E. Duguet, A. Brisson, and O. Lambert, “New insights into the nucleation and growth of PS nodules on silica nanoparticles by 3D cryo-electron tomography,” Soft Matter 4(2), 311–315 (2008). [CrossRef]
  22. B. W. Clare and D. L. Kepert, “The closest packing of equal circles on a sphere,” Proc. R. Soc. Lond. A Math. Phys. Sci. 405(1829), 329–344 (1986). [CrossRef]
  23. J. R. Edmundson, “The distribution of point charges on the surface of a sphere,” Acta Crystallogr. A 48(1), 60–69 (1992). [CrossRef]
  24. D. A. Kottwitz, “The densest packing of equal circles on a sphere,” Acta Crystallogr. A 47(3), 158–165 (1991). [CrossRef]
  25. A. Ishimaru, S. W. Lee, Y. Kuga, and V. Jandhyala, “Generalized constitutive relations for metamaterials based on the quasi-static Lorentz theory,” IEEE Trans. Antenn. Propag. 51(10), 2550–2557 (2003). [CrossRef]
  26. M. Wheeler, J. Aitchison, and M. Mojahedi, “Coupled magnetic dipole resonances in sub-wavelength dielectric particle clusters,” J. Opt. Soc. Am. B 27(5), 1083–1091 (2010). [CrossRef]
  27. D. Mackowski, “Calculation of total cross sections of multiple-sphere clusters,” J. Opt. Soc. Am. A 11(11), 2851–2861 (1994). [CrossRef]
  28. I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García De Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express 14(21), 9988–9999 (2006). [CrossRef] [PubMed]
  29. K. Aydin, I. Bulu, K. Guven, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Investigation of magnetic resonances for different split-ring resonator parameters and designs,” N. J. Phys. 7, 168 (2005). [CrossRef]
  30. O. N. Singh, and A. Lakhtakia, eds., Electromagnetic Waves in Unconventional Materials and Structures (John Wiley, New York, 2000).
  31. P. C. Waterman and N. E. Pedersen, “Electromagnetic scattering by periodic arrays of particles,” J. Appl. Phys. 59(8), 2609 (1986). [CrossRef]
  32. A. Moroz and C. Sommers, “Photonic band gaps of three-dimensional face-centred cubic lattices,” J. Phys. Condens. Matter 11(4), 997–1008 (1999). [CrossRef]
  33. A. Moroz, “Metallo-dielectric diamond and zinc-blende photonic crystals,” Phys. Rev. B 66(11), 115109 (2002). [CrossRef]
  34. V. Yannopapas and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequencies,” J. Phys. Condens. Matter 17(25), 3717–3734 (2005). [CrossRef] [PubMed]
  35. S. Tretyakov, Analytical Modeling in Applied Electromagnetics (Artech House, 2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited