OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 3 — Jan. 31, 2011
  • pp: 2782–2790

Broadband tuning of optomechanical cavities

Gustavo S. Wiederhecker, Sasikanth Manipatruni, Sunwoo Lee, and Michal Lipson  »View Author Affiliations

Optics Express, Vol. 19, Issue 3, pp. 2782-2790 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (6121 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate broadband tuning of an optomechanical microcavity optical resonance by exploring the large optomechanical coupling of a double-wheel microcavity and its uniquely low mechanical stiffness. Using a pump laser with only 13 mW at telecom wavelengths we show tuning of the silicon nitride microcavity resonances over 32 nm. This corresponds to a tuning power efficiency of only 400 μW/nm. By choosing a relatively low optical Q resonance (≈18,000) we prevent the cavity from reaching the regime of regenerative optomechanical oscillations. The static mechanical displacement induced by optical gradient forces is estimated to be as large as 60 nm.

© 2011 Optical Society of America

OCIS Codes
(190.4360) Nonlinear optics : Nonlinear optics, devices
(230.3990) Optical devices : Micro-optical devices

ToC Category:
Nonlinear Optics

Original Manuscript: November 9, 2010
Revised Manuscript: January 20, 2011
Manuscript Accepted: January 23, 2011
Published: January 31, 2011

Gustavo S. Wiederhecker, Sasikanth Manipatruni, Sunwoo Lee, and Michal Lipson, "Broadband tuning of optomechanical cavities," Opt. Express 19, 2782-2790 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Groblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature 460, 724–727 (2009). [CrossRef] [PubMed]
  2. K. Vahala, M. Herrmann, S. Knunz, V. Batteiger, G. Saathoff, T. W. Hansch, and T. Udem, “A phonon laser,” Nat. Phys. 5, 682–686 (2009). [CrossRef]
  3. A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4, 415–419 (2008). [CrossRef]
  4. T. Hansch, and A. Schawlow, “Cooling of gases by laser radiation,” Opt. Commun. 13, 68–69 (1975). [CrossRef]
  5. B. G. Lee, A. Biberman, N. Sherwood-Droz, C. B. Poitras, M. Lipson, and K. Bergman, “High-speed 2x2 switch for multiwavelength silicon-photonic networks-on-chip,” J. Lightwave Technol. 27, 2900–2907 (2009). [CrossRef]
  6. J. Rosenberg, Q. Lin, and O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nat. Photonics 3, 478–483 (2009). [CrossRef]
  7. H. L. R. Lira, S. Manipatruni, and M. Lipson, “Broadband hitless silicon electro-optic switch for on-chip optical networks,” Opt. Express 17, 22271–22280 (2009). [CrossRef]
  8. N. Han-Yong, R. W. Michael, L. Daqun, W. Xuan, M. Jose, R. P. Roberto, and P. Kachesh, “4 x 4 wavelength-reconfigurable photonic switch based on thermally tuned silicon microring resonators,” Opt. Eng. 47, 044601 (2008). [CrossRef]
  9. A. Biberman, N. Sherwood-Droz, B. G. Lee, M. Lipson, and K. Bergman, “Thermally active 4x4 non-blocking switch for networks-on-chip,” in the “21st Annual Meeting of the IEEE Lasers and Electro-Optics Society (2008)”, pp. 370–371.
  10. N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (noc),” Opt. Express 16, 15915–15922 (2008). [CrossRef] [PubMed]
  11. T. J. Wang, C. H. Chu, and C. Y. Lin, “Electro-optically tunable microring resonators on lithium niobate,” Opt. Lett. 32, 2777–2779 (2007). [CrossRef] [PubMed]
  12. A. Guarino, G. Poberaj, and D. Rezzonico, “R. Degl’Innocenti, and P. Gunter, “Electro-optically tun-able microring resonators in lithium niobate,” Nat. Photonics 1, 407–410 (2007). [CrossRef]
  13. A. Reja, W. H. Charles, G. Fuwan, I. S. Henry, K. Franz, J. R. Rajeev, and A. P. Milos, “Low power thermal tuning of second-order microring resonators,” in “CLEO/QELS,” (Optical Society of America, 2007), OSA Technical Digest Series (CD), p. CFQ5.
  14. G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462, 633–636 (2009). [CrossRef] [PubMed]
  15. I. W. Frank, P. B. Deotare, M. W. McCutcheon, and M. Loncar, “Programmable photonic crystal nanobeam cavities,” Opt. Express 18, 8705–8712 (2010). [CrossRef] [PubMed]
  16. K. Takahashi, Y. Kanamori, Y. Kokubun, and K. Hane, “A wavelength-selective add-drop switch using silicon microring resonator with a submicron-comb electrostatic actuator,” Opt. Express 16, 14421–14428 (2008). [CrossRef] [PubMed]
  17. J. Yao, D. Leuenberger, M. C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated mems tunable coupler,” IEEE J. Sel. Top. Quantum Electron. 13, 202–208 (2007). [CrossRef]
  18. M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nat. Photonics 1, 416–422 (2007). [CrossRef]
  19. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2, 180–184 (2008). [CrossRef]
  20. F. Riemenschneider, M. Maute, H. Halbritter, G. Boehm, M.-C. Amann, and P. Meissner, “Con-tinuously tunable long-wavelength mems-vcsel with over 40-nm tuning range,” IEEE Photon. Technol. Lett. 16, 2212–2214 (2004). [CrossRef]
  21. T. P. M. Alegre, R. Perahia, and O. Painter, “Optomechanical zipper cavity lasers: theoretical analysis of tuning range and stability,” Opt. Express 18, 7872–7885 (2010). [CrossRef] [PubMed]
  22. R. Perahia, J. D. Cohen, S. Meenehan, T. P. M. Alegre, and O. Painter, “Electrostatically tunable optomechanical ‘zipper’ cavity laser,” Appl. Phys. Lett. 97, 191112 (2010).
  23. D. Van Thourhout, and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics 4, 211–217 (2010). [CrossRef]
  24. M. Li, W. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008). [CrossRef] [PubMed]
  25. J. Ma and M. L. Povinelli, “Large tuning of birefringence in two strip silicon waveguides via optomechanical motion,” Opt. Express 17, 17818–17828 (2009). [CrossRef] [PubMed]
  26. P. T. Rakich, M. A. Popovic, M. Soljacic, and E. P. Ippen, “Trapping, corralling and spectral bonding of optical resonances through optically induced potentials,” Nat. Photonics 1, 658–665 (2007). [CrossRef]
  27. M. L. Povinelli, M. Loncar, M. Ibanescu, E. J. Smythe, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, “Evanescent-wave bonding between optical waveguides,” Opt. Lett. 30, 3042–3044 (2005). [CrossRef] [PubMed]
  28. Each ring contributes to half of the total change in the gap between them. the spring constant k is calculated through the static response of the rings to the optical force, a solid-stress finite element analysis was used.
  29. F. W. Delrio, M. P. De Boer, J. A. Knapp, E. D. Reedy, P. J. Clews, and M. L. Dunn, “The role of van der waals forces in adhesion of micromachined surfaces,” Nat. Mater. 4, 629–634 (2005). [CrossRef]
  30. Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009). [CrossRef] [PubMed]
  31. T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005). [CrossRef] [PubMed]
  32. A. Schliesser, O. Arcizet, R. Riviere, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the heisenberg uncer-tainty limit,” Nat. Phys. 5, 509–514 (2009). [CrossRef]
  33. S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003). [CrossRef] [PubMed]
  34. G. Anetsberger, R. Rivi, A. Schliesser, O. Arcizet, and T. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photonics 2, 627–633 (2008). [CrossRef]
  35. M. Pinard, Y. Hadjar, and A. Heidmann, “Effective mass in quantum effects of radiation pressure,” Eur. Phys. J. D 7, 10 pages (1999).
  36. M. Bao, and H. Yang, “Squeeze film air damping in mems,” Sens. Actuators A Phys. 136, 3–27 (2007). [CrossRef]
  37. T. Kippenberg, and K. Vahala, “Cavity opto-mechanics,” Opt. Express 15, 17172–17205 (2007). [CrossRef] [PubMed]
  38. Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics 4, 236–242 (2010). [CrossRef]
  39. A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high q ring resonator,” Opt. Express 17, 11366–11370 (2009). [CrossRef] [PubMed]
  40. Comsol multiphysics 3.5a is a finite-element multiphysics simulation tool. Comsol AB.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

Supplementary Material

» Media 1: MOV (3845 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited