OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 3 — Jan. 31, 2011
  • pp: 2791–2796

Polarization-dependent plasmonic coupling in dual-layer metallic structures at terahertz frequencies

Zhong Xiang Zhang and Kam Tai Chan  »View Author Affiliations

Optics Express, Vol. 19, Issue 3, pp. 2791-2796 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1105 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Dual-layer metallic wire-hole structures were fabricated and their terahertz transmission properties were measured. They exhibit polarization-dependent transmittance with large extinction ratios. Simulation and experimental results on structures with different wire-to-hole orientations provide strong evidence that the resonance peaks are caused by plasmonic coupling between the two metallic layers. A simplified LC-circuit model is proposed to explain the coupling mechanism and to estimate the peak frequencies. Our results suggest that specific electromagnetic response can be achieved by appropriate design of the geometrical patterns on the two metallic layers and a suitable polarization of the incident wave.

© 2011 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:

Original Manuscript: November 24, 2010
Revised Manuscript: January 22, 2011
Manuscript Accepted: January 23, 2011
Published: January 28, 2011

Zhong Xiang Zhang and Kam Tai Chan, "Polarization-dependent plasmonic coupling in dual-layer metallic structures at terahertz frequencies," Opt. Express 19, 2791-2796 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007). [CrossRef] [PubMed]
  2. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998). [CrossRef]
  3. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007). [CrossRef]
  4. S. A. Maier, Plasmonics: Fundamentals and Applications, (Springer, New York, 2007).
  5. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, (Springer-Verlag, 1986).
  6. T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007). [CrossRef] [PubMed]
  7. K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004). [CrossRef] [PubMed]
  8. M. Babinet, “Memoires d'optique méteorologique,” Acad. Sci., Paris, C. R. 4, 638–648 (1837).
  9. R. W. Wood, “Anomalous Diffraction Gratings,” Phys. Rev. 48(12), 928–936 (1935). [CrossRef]
  10. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004). [CrossRef] [PubMed]
  11. C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008). [CrossRef]
  12. N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3(3), 157–162 (2009). [CrossRef]
  13. Z. Zhang, K. T. Chan, Y. Cui, S. He, C. Wang, Q. Xing, and Q. Wang, “Multimode transmission in complementary plasmonic structures at terahertz frequencies,” Appl. Phys. Lett. 96(7), 073506 (2010). [CrossRef]
  14. M. Iwanaga, “Polarization-selective transmission in stacked two-dimensional complementary plasmonic crystal slabs,” Appl. Phys. Lett. 96(8), 083106 (2010). [CrossRef]
  15. M. Iwanaga, “Subwavelength electromagnetic dynamics in stacked complementary plasmonic crystal slabs,” Opt. Express 18(15), 15389–15398 (2010). [CrossRef] [PubMed]
  16. L. B. Whitbourn and R. C. Compton, “Equivalent-circuit formulas for metal grid reflectors at a dielectric boundary,” Appl. Opt. 24(2), 217–220 (1985). [CrossRef] [PubMed]
  17. K. D. Möller, O. Sternberg, H. Grebel, and K. P. Stewart, “Inductive cross-shaped metal meshes and dielectrics,” Appl. Opt. 41(19), 3919–3926 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited