OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 3 — Jan. 31, 2011
  • pp: 2805–2814

Phase and amplitude imaging from noisy images by Kalman filtering

Laura Waller, Mankei Tsang, Sameera Ponda, Se Young Yang, and George Barbastathis  »View Author Affiliations

Optics Express, Vol. 19, Issue 3, pp. 2805-2814 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1967 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose and demonstrate a computational method for complex-field imaging from many noisy intensity images with varying defocus, using an extended complex Kalman filter. The technique offers dynamic smoothing of noisy measurements and is recursive rather than iterative, so is suitable for adaptive measurements. The Kalman filter provides near-optimal results in very low-light situations and may be adapted to propagation through turbulent, scattering, or nonlinear media.

© 2011 Optical Society of America

OCIS Codes
(100.3010) Image processing : Image reconstruction techniques
(100.5070) Image processing : Phase retrieval

ToC Category:
Image Processing

Original Manuscript: December 13, 2010
Revised Manuscript: January 20, 2011
Manuscript Accepted: January 24, 2011
Published: January 31, 2011

Laura Waller, Mankei Tsang, Sameera Ponda, Se Young Yang, and George Barbastathis, "Phase and amplitude imaging from noisy images by Kalman filtering," Opt. Express 19, 2805-2814 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Bragg, “Elimination of the unwanted image in diffraction microscopy,” Nature 167, 190–191 (1951). [CrossRef] [PubMed]
  2. C. J. R. Sheppard, “Defocused transfer function for a partially coherent microscope and application to phase retrieval,” J. Opt. Soc. Am. A 21(5), 828–831 (2004). [CrossRef]
  3. D. Misell, “A method for the solution of the phase problem in electron microscopy,” J. Phys. D 6, L6–L9 (1973). [CrossRef]
  4. R. Gerchberg, and W. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35, 237–246 (1972).
  5. R. Gonsalves, “Phase retrieval from modulus data,” J. Opt. Soc. Am. A 66, 961–964 (1976). [CrossRef]
  6. J. Fienup, “Reconstruction of an object from the modulus of its Fourier transform,” Opt. Lett. 3, 27–29 (1978). [CrossRef] [PubMed]
  7. J. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21, 2758–2769 (1982). [CrossRef] [PubMed]
  8. G. Yang, B. Dong, B. Gu, J. Zhuang, and O. Ersoy, “Gerchberg–Saxton and Yang–Gu algorithms for phase retrieval in a nonunitary transform system: a comparison,” Appl. Opt. 33(2), 209–218 (1994). [CrossRef] [PubMed]
  9. J. Fienup, “Iterative method applied to image reconstruction and to computer-generated holograms,” Opt. Eng. 19(3), 291–305 (1980).
  10. R. Rolleston, and N. George, “Image reconstruction from partial Fresnel zone information,” Appl. Opt. 25(2), 178–183 (1986). [CrossRef] [PubMed]
  11. R. Piestun, and J. Shamir, “Control of wave-front propagation with diffractive elements,” Opt. Lett. 19(11), 771–773 (1994). [CrossRef] [PubMed]
  12. Z. Zalevsky, D. Mendlovic, and R. Dorsch, “Gerchberg–Saxton algorithm applied in the fractional Fourier or the Fresnel domain,” Opt. Lett. 21, 842–844 (1996). [CrossRef] [PubMed]
  13. J. Dominguez-Caballero, S. Takahashi, S. J. Lee, and G. Barbastathis, “Design and fabrication of computer generated holograms for Fresnel domain lithography,” In OSA DH and 3D Imaging, paper DWB3 (2009).
  14. H. Stark, Y. Yang, and Y. Yang, Vector Space Projections: A Numerical Approach to Signal and Image Processing, Neural Nets, and Optics. (John Wiley & Sons, 1998). [PubMed]
  15. T. D. Gerke, and R. Piestun, “Aperiodic volume optics,” Nat. Photonics 4(3), 188–193 (2010). [CrossRef]
  16. S. Pavani, and R. Piestun, “High-efficiency rotating point spread functions,” Opt. Express 16(5), 3484–3489 (2008). [CrossRef] [PubMed]
  17. R. Horstmeyer, S. Oh, and R. Raskar, “Iterative aperture mask design in phase space using a rank constraint,” Opt. Express 18(21), 22545–22555 (2010). [CrossRef] [PubMed]
  18. A. Devaney, and R. Childlaw, “On the uniqueness question in the problem of phase retrieval from intensity measurements,” J. Opt. Soc. Am. A 68, 1352–1354 (1978). [CrossRef]
  19. J. Fienup, “Phase-retrieval algorithms for a complicated optical system,” Appl. Opt. 32, 1737–1746 (1993). [CrossRef] [PubMed]
  20. L. Allen, and M. P. Oxley, “Phase retrieval from series of images obtained by defocus variation,” Opt. Commun. 199(1–4), 65–75 (2001). [CrossRef]
  21. Y. Zhang, G. Pedrini, W. Osten, and H. Tiziani, “Whole optical wave field reconstruction from double or multi in-line holograms by phase retrieval algorithm,” Opt. Express 11(24), 3234–3241 (2003). [CrossRef] [PubMed]
  22. G. Pedrini, W. Osten, and Y. Zhang, “Wave-front reconstruction from a sequence of interferograms recorded at different planes,” Opt. Lett. 30(8), 833–835 (2005). [CrossRef] [PubMed]
  23. H. Campbell, S. Zhang, A. Greenaway, and S. Restaino, “Generalized phase diversity for wave-front sensing,” Opt. Lett. 29(23), 2707–2709 (2004). [CrossRef] [PubMed]
  24. B. Dean, and C. Bowers, “Diversity selection for phase-diverse phase retrieval,” J. Opt. Soc. Am. A 20(8), 1490–1504 (2003). [CrossRef]
  25. R. Gonsalves, “Phase retrieval by differential intensity measurements,” J. Opt. Soc. Am. A 4, 166–170 (1987). [CrossRef]
  26. W. Southwell, “Wave-front analyzer using a maximum likelihood algorithm,” J. Opt. Soc. Am. 67(3), 396–399 (1977). [CrossRef]
  27. R. Gonsalves, “Small-phase solution to the phase-retrieval problem,” Opt. Lett. 26(10), 684–685 (2001). [CrossRef]
  28. T. Gureyev, A. Pogany, D. Paganin, and S. Wilkins, “Linear algorithms for phase retrieval in the Fresnel region,” Opt. Commun. 231, 53–70 (2004). [CrossRef]
  29. J. Guigay, M. Langer, R. Boistel, and P. Cloetens, “Mixed transfer function and transport of intensity approach for phase retrieval in the Fresnel region,” Opt. Lett. 32(12), 1617–1619 (2007). [CrossRef] [PubMed]
  30. D. Paganin, S. Mayo, T. Gureyev, P. Miller, and S. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc. 206(1), 33–40 (2002). [CrossRef] [PubMed]
  31. J. Miao, D. Sayre, and H. Chapman, “Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects,” J. Opt. Soc. Am. A 15(6), 1662–1669 (1998). [CrossRef]
  32. S. Mayo, P. Miller, S. Wilkins, T. Davis, D. Gao, T. Gureyev, D. Paganin, D. Parry, A. Pogany, and A. Stevenson, “Quantitative x-ray projection microscopy: phase-contrast and multi-spectral imaging,” J. Microsc. 207, 79–96 (2002). [CrossRef] [PubMed]
  33. M. Teague, “Deterministic phase retrieval: a Green’s function solution,” J. Opt. Soc. Am. A 73(11), 1434–1441 (1983). [CrossRef]
  34. D. Paganin, A. Barty, P. J. McMahon, and K. Nugent, “Quantitative phase-amplitude microscopy. III. The effects of noise,” J. Microsc. 214(1), 51–61 (2004). [CrossRef] [PubMed]
  35. M. Soto, and E. Acosta, “Improved phase imaging from intensity measurements in multiple planes,” Appl. Opt. 46(33), 7978–7981 (2007). [CrossRef] [PubMed]
  36. L. Waller, L. Tian, and G. Barbastathis, “Transport of intensity phase-amplitude imaging with higher order intensity derivatives,” Opt. Express 18(12), 12552–12561 (2010). [CrossRef] [PubMed]
  37. L. Waller, Y. Luo, S. Y. Yang, and G. Barbastathis, “Transport of intensity phase imaging in a volume holographic microscope,” Opt. Lett. 35(17), 2961–2963 (2010). [CrossRef] [PubMed]
  38. S. S. Kou, L. Waller, G. Barbastathis, and C. J. R. Sheppard, “Transport-of-intensity approach to differential interference contrast (TI-DIC) microscopy for quantitative phase imaging,” Opt. Lett. 35(3), 447–449 (2010). [CrossRef] [PubMed]
  39. L. Waller, S. S. Kou, C. J. R. Sheppard, and G. Barbastathis, “Phase from chromatic aberrations,” Opt. Express 18(22), 22817–22825 (2010). [CrossRef] [PubMed]
  40. R. Gonsalves, “Phase retrieval and diversity in adaptive optics,” Opt. Eng. 21, 829–832 (1982).
  41. R. Paxman, T. Schulz, and J. Fienup, “Joint estimation of object and aberrations by using phase diversity,” J. Opt. Soc. Am. A 9(7), 1072–1085 (1992). [CrossRef]
  42. R. Paxman, and J. Fienup, “Optical misalignment sensing and image reconstruction using phase diversity,” J. Opt. Soc. Am. A 5(6), 914–923 (1988). [CrossRef]
  43. D. Lee, M. Roggemann, B. Welsh, and E. Crosby, “Evaluation of least-squares phase-diversity technique for space telescope wave-front sensing,” Appl. Opt. 36(35), 9186–9197 (1997). [CrossRef]
  44. M. Roggemann, D. Tyler, and M. Bilmont, “Linear reconstruction of compensated images: theory and experimental results,” Appl. Opt. 31(35), 7429–7441 (1992). [CrossRef] [PubMed]
  45. M. Langer, P. Cloetens, J. P. Guigay, and F. Peyrin, “Quantitative comparison of direct phase retrieval algorithms in in-line phase tomography,” Med. Phys. 35(10), 4556–4567 (2008). [CrossRef] [PubMed]
  46. D. Lee, M. Roggemann, and B. Welsh, “Cramér-Rao analysis of phase-diverse wave-front sensing,” J. Opt. Soc. Am. A 16(5), 1005–1015 (1999). [CrossRef]
  47. L. Allen, H. Faulkner, K. Nugent, M. Oxley, and D. Paganin, “Phase retrieval from images in the presence of first-order vortices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(3), 037602 (2001). [CrossRef]
  48. R. Kalman, “A new approach to linear filtering and prediction problems,” J. Basic Eng. 82(1), 35–45 (1960). [CrossRef]
  49. G. Welch, and G. Bishop, An introduction to the Kalman filter, University of North Carolina at Chapel Hill, Chapel Hill, NC (1995).
  50. J. Crassidis, and J. Junkins, Optimal Estimation of Dynamic Systems (Chapman & Hall, 2004). [CrossRef]
  51. H. Van Trees, Detection, Estimation, and Modulation Theory (Krieger, 1992).
  52. D. Simon, Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches (Wiley-Interscience, 2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (45316 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited