OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 4 — Feb. 14, 2011
  • pp: 2858–2865

Surface plasmon polariton enhanced by optical parametric amplification in nonlinear hybrid waveguide

F. F. Lu, T. Li, J. Xu, Z. D. Xie, L. Li, S. N. Zhu, and Y. Y. Zhu  »View Author Affiliations


Optics Express, Vol. 19, Issue 4, pp. 2858-2865 (2011)
http://dx.doi.org/10.1364/OE.19.002858


View Full Text Article

Enhanced HTML    Acrobat PDF (1595 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We theoretically studied nonlinear interactions between surface plasmon polariton (SPP) and conventional waveguide mode in nonlinear hybrid waveguide and proposed a possible method to enhance SPP wave via optical parametric amplification (OPA). The phase matching condition of this OPA process is fulfilled by carefully tailoring the dispersions of SPP and guided mode. The influences of incident intensity and phase of guided wave on the OPA process are comprehensively analyzed. It is found that not only a strong enhancement of SPP but also modulations on this enhancement can be achieved. This result indicates potential applications in nonlinear optical integration and modulations.

© 2011 OSA

OCIS Codes
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(230.7390) Optical devices : Waveguides, planar
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Nonlinear Optics

History
Original Manuscript: December 10, 2010
Revised Manuscript: January 18, 2011
Manuscript Accepted: January 21, 2011
Published: January 31, 2011

Citation
F. F. Lu, T. Li, J. Xu, Z. D. Xie, L. Li, S. N. Zhu, and Y. Y. Zhu, "Surface plasmon polariton enhanced by optical parametric amplification in nonlinear hybrid waveguide," Opt. Express 19, 2858-2865 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-4-2858


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter 33(8), 5186–5201 (1986). [CrossRef] [PubMed]
  2. I. De Leon and P. Berini, “Theory of surface plasmon-polariton amplification in planar structures incorporating dipolar gain media,” Phys. Rev. B 78, 161401 (2008). [CrossRef]
  3. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003). [CrossRef] [PubMed]
  4. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009). [CrossRef] [PubMed]
  5. T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasman-polariton waveguides,” Phys. Rev. B 75(24), 245405 (2007). [CrossRef]
  6. T. Holmgaard, J. Gosciniak, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 18(22), 23009–23015 (2010). [CrossRef] [PubMed]
  7. R. W. Boyd, Nonlinear Optics (Elsevier Science, 2003).
  8. R. A. Baumgartner and R. Byer, “Optical parametric amplification,” IEEE J. Quantum Electron. 15(6), 432–444 (1979). [CrossRef]
  9. J. Armstrong, N. Bloembergen, J. Ducuing, and P. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962). [CrossRef]
  10. S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278(5339), 843–846 (1997). [CrossRef]
  11. H. J. Simon, D. E. Mitchell, and J. G. Watson, “Optical Second-Harmonic Generation with Surface Plasmons in Silver Films,” Phys. Rev. Lett. 33(26), 1531–1534 (1974). [CrossRef]
  12. H. J. Simon, R. E. Benner, and J. G. Rako, “Optical second harmonic generation with surface plasmons in piezoelectric crystals,” Opt. Commun. 23(2), 245–248 (1977). [CrossRef]
  13. S. Palomba and L. Novotny, “Nonlinear excitation of surface plasmon polaritons by four-wave mixing,” Phys. Rev. Lett. 101(5), 056802 (2008). [CrossRef] [PubMed]
  14. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  15. G. Lifante, Integrated Photonics: Fundamentals (Wiley, England, 2003).
  16. Z. Ruan, G. Veronis, K. L. Vodopyanov, M. M. Fejer, and S. Fan, “Enhancement of optics-to-THz conversion efficiency by metallic slot waveguides,” Opt. Express 17(16), 13502–13515 (2009). [CrossRef] [PubMed]
  17. R. H. Stolen, M. A. Bösch, and C. Lin, “Phase matching in birefringent fibers,” Opt. Lett. 6(5), 213–215 (1981). [CrossRef] [PubMed]
  18. T. Sugita, K. Mizuuchi, Y. Kitaoka, and K. Yamamoto, “31%-efficient blue second-harmonic generation in a periodically poled MgO:LiNbO3 waveguide by frequency doubling of an AlGaAs laser diode,” Opt. Lett. 24(22), 1590–1592 (1999). [CrossRef]
  19. H. Jiang, G. H. Li, and X. Y. Xu, “Highly efficient single-pass second harmonic generation in a periodically poled MgO:LiNbO3 waveguide pumped by a fiber laser at 1111.6 nm,” Opt. Express 17(18), 16073–16080 (2009). [CrossRef] [PubMed]
  20. Y. L. Lee, T. J. Eom, W. Shin, B.-A. Yu, D.-K. Ko, W.-K. Kim, and H.-Y. Lee, “Characteristics of a multi-mode interference device based on Ti:LiNbO3 channel waveguide,” Opt. Express 17(13), 10718–10724 (2009). [CrossRef] [PubMed]
  21. A. R. Davoyan, I. V. Shadrivov, and Y. S. Kivshar, “Quadratic phase matching in nonlinear plasmonic nanoscale waveguides,” Opt. Express 17(22), 20063–20068 (2009). [CrossRef] [PubMed]
  22. Z. J. Wu, X. K. Hu, Z. Y. Yu, W. Hu, F. Xu, and Y. Q. Lu, “Nonlinear plasmonic frequency conversion through quasiphase matching,” Phys. Rev. B 82(15), 155107 (2010). [CrossRef]
  23. G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16(4), 373–375 (1984). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited