OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 4 — Feb. 14, 2011
  • pp: 2895–2903

Generalized retarded response of nonlinear media and its influence on soliton dynamics

S. Pricking and H. Giessen  »View Author Affiliations


Optics Express, Vol. 19, Issue 4, pp. 2895-2903 (2011)
http://dx.doi.org/10.1364/OE.19.002895


View Full Text Article

Enhanced HTML    Acrobat PDF (2466 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate by means of numerical simulations of the generalized Nonlinear Schrödinger Equation that the retarded response of a nonlinear medium embedded in a single hole of a photonic crystal fiber crucially affects the spectrum generated by ultrashort laser pulses. By introducing a hypothetic medium with fixed dispersion and nonlinearity and with a variable retarded response, we are able to separate the influence of the retarded response from other effects. We show that the fission length of a launched higher-order soliton dramatically increases if the characteristic time of the retarded response is close to the input pulse duration. Furthermore, we investigate the effect of the retarded response on the soliton self-frequency shift and find that the optimum input pulse duration for maximizing the spectral width has to be shortened for a larger characteristic retarded response time. Our work has important implications on future studies of spatiotemporal solitons in selectively liquid-filled photonic crystal fibers.

© 2011 Optical Society of America

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: December 21, 2010
Revised Manuscript: January 28, 2011
Manuscript Accepted: January 28, 2011
Published: January 31, 2011

Citation
S. Pricking and H. Giessen, "Generalized retarded response of nonlinear media and its influence on soliton dynamics," Opt. Express 19, 2895-2903 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-4-2895


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. St. J. Russell, “Photonic crystal fibers,” Science 17, 358–362 (2003). [CrossRef]
  2. J. C. Knight, “Photonic crystal fibers,” Nature 424, 847–851 (2003). [CrossRef] [PubMed]
  3. W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424, 511–515 (2003). [CrossRef] [PubMed]
  4. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000). [CrossRef]
  5. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation via stimulated Raman scattering and parametric four-wave-mixing in photonic crystal fibers,” J. Opt. Soc. Am. B 19, 753–764 (2002). [CrossRef]
  6. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006). [CrossRef]
  7. P. J. Roberts, B. J. Mangan, H. Sabert, F. Couny, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Control of dispersion in photonic crystal fibers,” J. Opt. Fiber. Commun. Rep. 2, 435–461 (2005). [CrossRef]
  8. C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003). [CrossRef] [PubMed]
  9. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002). [CrossRef] [PubMed]
  10. C. R. Rosberg, F. H. Bennet, D. N. Neshev, P. D. Rasmussen, O. Bang, W. Krolikowski, A. Bjarklev, and Y. Kivshar, “Tunable diffraction and self-defocusing in liquid-filled photonic crystal fibers,” Opt. Express 15, 12145–12150 (2007). [CrossRef] [PubMed]
  11. B. T. Kuhlmey, B. J. Eggleton, and D. K. C. Wu, “Fluid-filled solid-core photonic bandgap fibers,” J. Lightwave Technol. 27, 1617–1630 (2009). [CrossRef]
  12. A. Bozolan, C. J. S. de Matos, C. M. B. Cordeiro, E. M. dos Santos, and J. Travers, “Supercontinuum in a water-core photonic crystal fiber,” Opt. Express 16, 9671–9676 (2008). [CrossRef] [PubMed]
  13. J. Bethge, A. Husakou, F. Mitschke, F. Noack, U. Griebner, G. Steinmeyer, and J. Herrmann, “Two-octave supercontinuum generation in a water-filled photonic crystal fiber,” Opt. Express 18, 6230–6240 (2010). [CrossRef] [PubMed]
  14. M. Vieweg, T. Gissibl, S. Pricking, B. J. Eggleton, D. C. Wu, B. T. Kuhlmey, and H. Giessen, “Ultrafast nonlinear optofluidics in selectively liquid-filled photonic crystal fibers,” Opt. Express 18, 25232–25240 (2010). [CrossRef] [PubMed]
  15. R. Zhang, J. Teipel, and H. Giessen, “Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation,” Opt. Express 14, 6800–6812 (2006). [CrossRef] [PubMed]
  16. H. Zhang, S. Chang, J. Yuan, and D. Huang, “Supercontinuum generation in chloroform-filled photonic crystal fibers,” Optik (Stuttg.) 121, 783–789 (2010). [CrossRef]
  17. R. V. J. Raja, A. Husakou, J. Hermann, and K. Porsezian, “Supercontinuum generation in liquid-filled photonic crystal fiber with slow nonlinear response,” J. Opt. Soc. Am. B 27, 1763–1768 (2010). [CrossRef]
  18. P. Wiewior, and C. Radzewicz, “Dynamics of molecular liquids studied by femtosecond optical Kerr effect,” Opt. Appl. 30, 103–120 (2000).
  19. K. Itoh, Y. Toda, R. Morita, and M. Yamashita, “Coherent optical control of molecular motion using polarized sequential pulses,” Jpn. J. Appl. Phys. 43, 6448–6451 (2004). [CrossRef]
  20. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 1995).
  21. T. F. Laurent, H. Hennig, N. P. Ernsting, and S. A. Kovalenko, “The ultrafast optical Kerr effect in liquid fluoroform: an estimate of the collision-induced contribution,” Phys. Chem. 2, 2691–2697 (2000). [CrossRef]
  22. F. M. Mitschke, and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11, 659–661 (1986). [CrossRef] [PubMed]
  23. S. M. Kobtsev, S. V. Kukarin, N. V. Fateev, and S. V. Smirnov, “Coherent, polarization and temporal properties of self-frequency shifted solitons generated in polarization-maintaining microstructured fibre,” Appl. Phys. B 81, 265–269 (2005). [CrossRef]
  24. A. Husakou, and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901 (2001). [CrossRef] [PubMed]
  25. H. H. Marvin, “The selective transmission and the dispersion of the liquid chlorides,” Phys. Rev. 34, 161–186 (1912).
  26. P. P. Ho, and R. R. Alfano, “Optical Kerr effect in liquids,” Phys. Rev. A 20, 2170–2187 (1979). [CrossRef]
  27. C.-M. Chen, and P. L. Kelley, “Nonlinear pulse compression in optical fibers: scaling laws and numerical analysis,” J. Opt. Soc. Am. B 19, 1961–1967 (2002). [CrossRef]
  28. N. Akhmediev, and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995). [CrossRef] [PubMed]
  29. A. V. Yulin, D. V. Skryabin, and P. St. J. Russell, “Four-wave mixing of linear waves and solitons in fibers with higher-order dispersion,” Opt. Lett. 29, 2411–2413 (2004). [CrossRef] [PubMed]
  30. J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11, 662–664 (1986). [CrossRef] [PubMed]
  31. A. C. Judge, O. Bang, B. J. Eggleton, B. T. Kuhlmey, E. C. Mägi, R. Pant, and C. Martijn de Sterke, “Optimization of the soliton self-frequency shift in a tapered photonic crystal fiber,” J. Opt. Soc. Am. B 26, 2064–2071 (2009). [CrossRef]
  32. A. A. Voronin, and A. M. Zheltikov, “Soliton self-frequency shift decelerated by self-steepening,” Opt. Lett. 33, 1723–1725 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited