OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 4 — Feb. 14, 2011
  • pp: 2922–2927

Eigen decomposition solution to the one-dimensional time-dependent photon transport equation

Chintha C. Handapangoda, Pubudu N. Pathirana, and Malin Premaratne  »View Author Affiliations

Optics Express, Vol. 19, Issue 4, pp. 2922-2927 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (649 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The time-dependent one-dimensional photon transport (radiative transfer) equation is widely used to model light propagation through turbid media with a slab geometry, in a vast number of disciplines. Several numerical and semi-analytical techniques are available to accurately solve this equation. In this work we propose a novel efficient solution technique based on eigen decomposition of the vectorized version of the photon transport equation. Using clever transformations, the four variable integro-differential equation is reduced to a set of first order ordinary differential equations using a combination of a spectral method and the discrete ordinates method. An eigen decomposition approach is then utilized to obtain the closed-form solution of this reduced set of ordinary differential equations.

© 2011 Optical Society of America

OCIS Codes
(080.2720) Geometric optics : Mathematical methods (general)
(290.7050) Scattering : Turbid media
(010.5620) Atmospheric and oceanic optics : Radiative transfer

ToC Category:

Original Manuscript: October 25, 2010
Revised Manuscript: January 27, 2011
Manuscript Accepted: January 28, 2011
Published: February 1, 2011

Virtual Issues
Vol. 6, Iss. 3 Virtual Journal for Biomedical Optics

Chintha C. Handapangoda, Pubudu N. Pathirana, and Malin Premaratne, "Eigen decomposition solution to the one-dimensional time-dependent photon transport equation," Opt. Express 19, 2922-2927 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. D. Klose, V. Ntziachristos, and A. H. Hielscher, “The inverse source problem based on the radiative transfer equation in optical molecular imaging,” J. Comput. Phys. 202, 323–345 (2005). [CrossRef]
  2. N. Y. Gnedin, “Multi-dimensional cosmological radiative transfer with a variable Eddington tensor formalism,” N. Astron. 6, 437–455 (2001). [CrossRef]
  3. D. M. O’Brien, “Accelerated quasi Monte Carlo integration of the radiative transfer equation,” J. Quant. Spectrosc. Radiat. Transf. 48, 41–59 (1992). [CrossRef]
  4. K. Stamnes, S. C. Tsay, W. Wiscombe, and K. Jayaweera, “Numerically stable algorithm for discrete-ordinatemethod radiative transfer in multiple scattering and emitting layered media,” Appl. Opt. 27, 2502–2509 (1988). [CrossRef] [PubMed]
  5. J. L. Deuz, M. Herman, and R. Santer, “Fourier series expansion of the transfer equation in the atmosphere-ocean system,” J. Quant. Spectrosc. Radiat. Transf. 41, 483–494 (1989). [CrossRef]
  6. C. E. Siewert and J. R. Thomas, “Radiative transfer calculations in spheres and cylinders,” J. Quant. Spectrosc. Radiat. Transf. 34, 59–64 (1985). [CrossRef]
  7. C. E. Siewert, “A radiative-transfer inverse-source problem for a sphere,” J. Quant. Spectrosc. Radiat. Transf. 52, 157–160 (1994). [CrossRef]
  8. E. W. Larsen, “The inverse source problem in radiative transfer,” J. Quant. Spectrosc. Radiat. Transf. 15, 1–5 (1975). [CrossRef]
  9. G. C. Pomraning and G. M. Foglesong, “Transport-diffusion interfaces in radiative transfer,” J. Comput. Phys. 32, 420–436 (1979). [CrossRef]
  10. Z. M. Tan and P. F. Hsu, “An integral formulation of transient radiative transfer,” ASME J. Heat Transfer 123, 466–475 (2001). [CrossRef]
  11. J. A. Fleck, “The calculation of nonlinear radiation transport by a Monte Carlo method,” Methods Comput. Phys. 1, 43–65 (1963).
  12. A. D. Kim and A. Ishimaru, “A Chebyshev spectral method for radiative transfer equations applied to electromagnetic wave propagation and scattering in discrete random media,” J. Comput. Phys. 152, 264–280 (1999). [CrossRef]
  13. A. D. Kim and M. Moscoso, “Chebyshev spectral methods for radiative transfer,” SIAM J. Sci. Comput. (USA) 23, 2074–2094 (2002). [CrossRef]
  14. C. C. Handapangoda, M. Premaratne, L. Yeo, and J. Friend, “Laguerre Runge-Kutta-Fehlberg method for simulating laser pulse propagation in biological tissue,” IEEE J. Sel. Top. Quantum Electron. 14, 105–112 (2008). [CrossRef]
  15. A. D. Kim and M. Moscoso, “Chebyshev spectral methods fro radiative transfer,” SIAM J. Sci. Comput. (USA) 23, 2074–2094 (2002). [CrossRef]
  16. A. B. Carlson, Communication Systems: An Introduction to Signals and Noise in Electrical Communication (McGraw-Hill, 1986).
  17. S. Chandrasekhar, Radiative Transfer (Dover Publications, 1960).
  18. K. Stamnes and R. A. Swanson, “A new look at the discrete ordinate method for radiative transfer calculations in anisotropically scattering atmospheres,” J. Atmos. Sci. 38, 387–399 (1981). [CrossRef]
  19. W. H. Press, S. A. Teukolsk, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C + +, 2nd ed. (Cambridge University Press, 2003).
  20. C. H. Edwards and D. E. Penney, Differential Equations: Computing andModeling, 3rd ed. (Prentice Hall, 2004).
  21. C. C. Handapangoda and M. Premaratne, “Implicitly causality enforced solution of multidimensional transient photon transport equation,” Opt. Express 17, 23423–23442 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited