OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 4 — Feb. 14, 2011
  • pp: 2952–2958

Bit-rate variable DPSK demodulation based on cascaded four-wave mixing

Yongheng Dai and Chester Shu  »View Author Affiliations

Optics Express, Vol. 19, Issue 4, pp. 2952-2958 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1077 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a demodulator for DPSK signals at variable bit rates based on cascaded four-wave mixing (FWM). The demodulation utilizes two FWM processes in a photonic crystal fiber (PCF) with in-between dispersion in a chirped fiber Bragg grating (CFBG). The first FWM generates a wavelength-tunable idler carrying phase information of the signal. A tunable optical delay between the signal and the idler is then introduced by dispersion. The signal, the idler, and the pump are reflected by the CFBG with a reflectance of 99% back to the PCF to initiate the second FWM process. In the second FWM, the phase relationship between the signal and the one-bit-delayed idler determines an amplification or attenuation of the idler, converting phase modulation to intensity modulation. Error-free demodulations have been successfully demonstrated for both NRZ and RZ-DPSK signals at 5 and 10 Gb/s.

© 2011 OSA

OCIS Codes
(060.5060) Fiber optics and optical communications : Phase modulation
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: November 23, 2010
Revised Manuscript: December 19, 2010
Manuscript Accepted: December 20, 2010
Published: February 1, 2011

Yongheng Dai and Chester Shu, "Bit-rate variable DPSK demodulation based on cascaded four-wave mixing," Opt. Express 19, 2952-2958 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. H. Gnauck, X. Liu, S. Chandrasekhar, and X. Wei, “Optical duobinary format from demodulation of DPSK using athermal delay interferometer,” IEEE Photon. Technol. Lett. 18(4), 637–639 (2006). [CrossRef]
  2. E. A. Swanson, J. C. Livas, and R. S. Bondurant, “High sensitivity optically preamplified direct detection DPSK receiver with active delay-line stabilization,” IEEE Photon. Technol. Lett. 6(2), 263–265 (1994). [CrossRef]
  3. K. Voigt, L. Zimmermann, G. Winzer, T. Mitze, J. Bruns, K. Petermann, B. Hüttl, and C. Schubert, “Performance of 40-Gb/s DPSK demodulator in SOI-technology,” IEEE Photon. Technol. Lett. 20(8), 614–616 (2008). [CrossRef]
  4. C. W. Chow and H. K. Tsang, “Polarization-independent DPSK demodulation using a birefringent fiber loop,” IEEE Photon. Technol. Lett. 17(6), 1313–1315 (2005). [CrossRef]
  5. T. Y. Kim, M. Hanawa, S. J. Kim, S. Hann, Y. H. Kim, W. T. Han, and C. S. Park, “Optical DPSK demodulator based on pi-phase-shifted fiber Bragg grating with an optically tunable phase shifter,” IEEE Photon. Technol. Lett. 18(17), 1834–1836 (2006). [CrossRef]
  6. L. Yi, Y. Jaouën, W. Hu, J. Zhou, Y. Su, and E. Pincemin, “Simultaneous demodulation and slow light of differential phase-shift keying signals using stimulated-Brillouin-scattering-based optical filtering in fiber,” Opt. Lett. 32(21), 3182–3184 (2007). [CrossRef] [PubMed]
  7. L. Xu, C. Li, C. Wong, and H. K. Tsang, “Optical differential-phase-shift-keying demodulation using a silicon microring resonator,” IEEE Photon. Technol. Lett. 21(5), 295–297 (2009). [CrossRef]
  8. Y. K. Lizé, L. Christen, X. Wu, J.-Y. Yang, S. Nuccio, T. Wu, A. E. Willner, and R. Kashyap, “Free spectral range optimization of return-to-zero differential phase shift keyed demodulation in the presence of chromatic dispersion,” Opt. Express 15(11), 6817–6822 (2007). [CrossRef] [PubMed]
  9. Y. K. Lizé, L. Christen, M. Nazarathy, Y. Atzmon, S. Nuccio, P. Saghari, R. Gomma, J.-Y. Yang, R. Kashyap, A. E. Willner, and L. Paraschis, “Tolerances and receiver sensitivity penalties of multibit delay differential-phase shift-keying demodulation,” IEEE Photon. Technol. Lett. 19(23), 1874–1876 (2007). [CrossRef]
  10. D. Hillerkuss, M. Winter, M. Teschke, A. Marculescu, J. Li, G. Sigurdsson, K. Worms, S. Ben Ezra, N. Narkiss, W. Freude, and J. Leuthold, “Simple all-optical FFT scheme enabling Tbit/s real-time signal processing,” Opt. Express 18(9), 9324–9340 (2010). [CrossRef] [PubMed]
  11. L. Christen, Y. Lizé, S. Nuccio, A. E. Willner, and L. Paraschis, “Variable rate, multi-format receiver design for 10 to 40 Gb/s DPSK and OOK formats,” Opt. Express 16(6), 3828–3833 (2008). [CrossRef] [PubMed]
  12. M. P. Fok and C. Shu, “Delay-asymmetric nonlinear loop mirror for DPSK demodulation,” Opt. Lett. 33(23), 2845–2847 (2008). [CrossRef] [PubMed]
  13. Y. Dai, C. Shu, and M. P. Fok, “Dual-pumped delay-asymmetric nonlinear loop mirror for DPSK demodulation at widely tunable bit rates,” in Proceedings of OptoElectronics and Communications Conference (IEEE 2009), paper FE6.
  14. Y. Okawachi, M. A. Foster, A. C. Turner, R. Salem, J. S. Levy, M. Lipson, and A. L. Gaeta, “Tunable delays via conversion-dispersion using on-chip four-wave-mixing,” in Proceedings of Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies 2008 Technical Digest (Optical Society of America, Washington, DC, 2008),paper CMBB4.
  15. Y. Dai, and C. Shu, “Tunable DPSK demodulation using variable optical delay in a straight-line interferometric structure,” in Proceedings of European Conference and Exhibition on Optical Communication (IEEE 2010), paper P1. 13.
  16. K. Croussore and G. Li, “Phase regeneration of NRZ-DPSK signals based on symmetric-pump phase sensitive amplification,” IEEE Photon. Technol. Lett. 19(11), 864–866 (2007). [CrossRef]
  17. P. J. Winzer and R. J. Essiambre, “Advanced modulation formats for high-capacity optical transport networks,” J. Lightwave Technol. 24(12), 4711–4728 (2006). [CrossRef]
  18. A. H. Gnauck and P. J. Winzer, “Optical phase-shift-keyed transmission,” J. Lightwave Technol. 23(1), 115–130 (2005). [CrossRef]
  19. D. T. H. Tan, K. Ikeda, R. E. Saperstein, B. Slutsky, and Y. Fainman, “Chip-scale dispersion engineering using chirped vertical gratings,” Opt. Lett. 33(24), 3013–3015 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited