OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 4 — Feb. 14, 2011
  • pp: 2959–2964

Optical spectra beyond the amplifier bandwidth limitation in dispersion-managed mode-locked fiber lasers

Souad Chouli, José M. Soto-Crespo, and Philippe Grelu  »View Author Affiliations

Optics Express, Vol. 19, Issue 4, pp. 2959-2964 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1013 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the intracavity pulse dynamics inside dispersion-managed mode-locked fiber lasers, and show numerically that for a relatively wide range of parameters, pulse compression dynamics in the passive anomalous fiber can be accompanied by a significant enhancement of the spectral width by a factor close to 3. Varying the average cavity dispersion also reveals chaotic dynamics for certain dispersion ranges. The impact of the implementation of an optical output port to tap optimal pulse features is discussed.

© 2011 OSA

OCIS Codes
(140.3510) Lasers and laser optics : Lasers, fiber
(140.4050) Lasers and laser optics : Mode-locked lasers
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons

ToC Category:
Lasers and Laser Optics

Original Manuscript: December 2, 2010
Revised Manuscript: December 30, 2010
Manuscript Accepted: January 3, 2011
Published: February 1, 2011

Souad Chouli, José M. Soto-Crespo, and Philippe Grelu, "Optical spectra beyond the amplifier bandwidth limitation in dispersion-managed mode-locked fiber lasers," Opt. Express 19, 2959-2964 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18(13), 1080–1082 (1993). [CrossRef] [PubMed]
  2. F. M. Knox, W. Forysiak, and N. Doran, “10-Gbt/s soliton communication systems over standard fiber at 1.55 μm and the use of dispersion compensation,” J. Lightwave Technol. 13(10), 1955–1962 (1995). [CrossRef]
  3. H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiments,” IEEE J. Quantum Electron. 31(3), 591–598 (1995). [CrossRef]
  4. I. Gabitov, E. G. Shapiro, and S. K. Turitsyn, “Optical pulse dynamics in fiber links with dispersion compensation,” Opt. Commun. 134(1-6), 317–329 (1997). [CrossRef]
  5. B. G. Bale, S. Boscolo, J. N. Kutz, and S. K. Turitsyn, “Intracavity dynamics in high-power mode-locked fiber lasers,” Phys. Rev. A 81(3), 033828 (2010). [CrossRef]
  6. Ph. Grelu, J. Béal, and J. M. Soto-Crespo, “Soliton pairs in a fiber laser: from anomalous to normal average dispersion regime,” Opt. Express 11(18), 2238–2243 (2003). [CrossRef] [PubMed]
  7. J. M. Soto-Crespo, M. Grapinet, Ph. Grelu, and N. Akhmediev, “Bifurcations and multiple-period soliton pulsations in a passively mode-locked fiber laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6), 066612 (2004). [CrossRef]
  8. S. Chouli and Ph. Grelu, “Rains of solitons in a fiber laser,” Opt. Express 17(14), 11776–11781 (2009). [CrossRef] [PubMed]
  9. H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantu.m Opt. 6(6), 1173–1185 (2000). [CrossRef]
  10. G. P. Agrawal, Nonlinear Fiber Optics 4th Edition. (Academic Press, Boston 2007).
  11. K. C. Chan, H. F. Liu,, K. C. Chan, and H. F. Liu, “Short pulse generation by higher order soliton-effect compression: effects of optical fiber characteristics,” IEEE J. Quantum Electron. 31(12), 2226–2235 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited