OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 4 — Feb. 14, 2011
  • pp: 2989–2995

A high speed wavefront determination method based on spatial frequency modulations for focusing light through random scattering media

Meng Cui  »View Author Affiliations


Optics Express, Vol. 19, Issue 4, pp. 2989-2995 (2011)
http://dx.doi.org/10.1364/OE.19.002989


View Full Text Article

Enhanced HTML    Acrobat PDF (939 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A large number of degrees of freedom are required to produce a high quality focus through random scattering media. Previous demonstrations based on spatial phase modulations suffer from either a slow speed or a small number of degrees of freedom. In this work, a high speed wavefront determination technique based on spatial frequency domain wavefront modulations is proposed and experimentally demonstrated, which is capable of providing both a high operation speed and a large number of degrees of freedom. The technique was employed to focus light through a strongly scattering medium and the entire wavefront was determined in 400 milliseconds, ~three orders of magnitude faster than the previous report.

© 2011 OSA

OCIS Codes
(110.0113) Imaging systems : Imaging through turbid media
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Imaging Systems

History
Original Manuscript: December 13, 2010
Revised Manuscript: January 22, 2011
Manuscript Accepted: January 24, 2011
Published: February 1, 2011

Virtual Issues
Vol. 6, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Meng Cui, "A high speed wavefront determination method based on spatial frequency modulations for focusing light through random scattering media," Opt. Express 19, 2989-2995 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-4-2989


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. A. Wilt, L. D. Burns, E. T. Wei Ho, K. K. Ghosh, E. A. Mukamel, and M. J. Schnitzer, “Advances in light microscopy for neuroscience,” Annu. Rev. Neurosci. 32(1), 435–506 (2009). [CrossRef] [PubMed]
  2. J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004). [CrossRef] [PubMed]
  3. W. Denk, J. H. Strickler, and W. W. Webb, “2-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990). [CrossRef] [PubMed]
  4. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-stokes raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999). [CrossRef]
  5. L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009). [CrossRef]
  6. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  7. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006). [CrossRef] [PubMed]
  8. W. Supatto, A. McMahon, S. E. Fraser, and A. Stathopoulos, “Quantitative imaging of collective cell migration during Drosophila gastrulation: multiphoton microscopy and computational analysis,” Nat. Protoc. 4(10), 1397–1412 (2009). [CrossRef] [PubMed]
  9. T. Vo-Dinh, Biomedical photonics handbook (CRC press, New York, 2003).
  10. A. Yariv and P. Yeh, “Phase conjugate optics and real-time holography,” IEEE J. Quantum Electron. 14(9), 650–660 (1978). [CrossRef]
  11. C. Gu and P. C. Yeh, “Partial phase-conjugation, fidelity, and reciprocity,” Opt. Commun. 107(5-6), 353–357 (1994). [CrossRef]
  12. A. Derode, P. Roux, and M. Fink, “Robust acoustic time-reversal with high-order multiple-scattering,” Phys. Rev. Lett. 75(23), 4206–4209 (1995). [CrossRef] [PubMed]
  13. M. Cui, E. J. McDowell, and C. H. Yang, “Observation of polarization-gate based reconstruction quality improvement during the process of turbidity suppression by optical phase conjugation,” Appl. Phys. Lett. 95(12), 123702 (2009). [CrossRef] [PubMed]
  14. M. Cui and C. Yang, “Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation,” Opt. Express 18(4), 3444–3455 (2010). [CrossRef] [PubMed]
  15. C. L. Hsieh, Y. Pu, R. Grange, and D. Psaltis, “Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media,” Opt. Express 18(12), 12283–12290 (2010). [CrossRef] [PubMed]
  16. G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science 315(5815), 1120–1122 (2007). [CrossRef] [PubMed]
  17. C. A. Primmerman, D. V. Murphy, D. A. Page, B. G. Zollars, and H. T. Barclay, “Compensation of atmospheric optical distortion using a synthetic beacon,” Nature 353(6340), 141–143 (1991). [CrossRef]
  18. A. Roorda, F. Romero-Borja, W. Donnelly Iii, H. Queener, T. J. Hebert, and M. C. W. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002). [PubMed]
  19. D. Débarre, E. J. Botcherby, M. J. Booth, and T. Wilson, “Adaptive optics for structured illumination microscopy,” Opt. Express 16(13), 9290–9305 (2008). [CrossRef] [PubMed]
  20. M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006). [CrossRef] [PubMed]
  21. M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. U.S.A. 99(9), 5788–5792 (2002). [CrossRef] [PubMed]
  22. N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7(2), 141–147 (2010). [CrossRef]
  23. W. B. Bridges, P. T. Brunner, S. P. Lazzara, T. A. Nussmeier, T. R. O’Meara, J. A. Sanguinet, and W. P. Brown., “Coherent optical adaptive techniques,” Appl. Opt. 13(2), 291–300 (1974). [CrossRef] [PubMed]
  24. J. E. Pearson, W. B. Bridges, S. Hansen, T. A. Nussmeier, and M. E. Pedinoff, “Coherent optical adaptive techniques: design and performance of an 18-element visible multidither COAT system,” Appl. Opt. 15(3), 611–621 (1976). [CrossRef] [PubMed]
  25. I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32(16), 2309–2311 (2007). [CrossRef] [PubMed]
  26. M. Cui, E. J. McDowell, and C. Yang, “An in vivo study of turbidity suppression by optical phase conjugation (TSOPC) on rabbit ear,” Opt. Express 18(1), 25–30 (2010). [CrossRef] [PubMed]
  27. I. M. Vellekoop and C. M. Aegerter, “Focusing light through living tissue,” Proc. SPIE 7554, 755430, 755430-10 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited