OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 4 — Feb. 14, 2011
  • pp: 3004–3018

Long-distance practical quantum key distribution by entanglement swapping

Artur Scherer, Barry C. Sanders, and Wolfgang Tittel  »View Author Affiliations


Optics Express, Vol. 19, Issue 4, pp. 3004-3018 (2011)
http://dx.doi.org/10.1364/OE.19.003004


View Full Text Article

Enhanced HTML    Acrobat PDF (1024 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We develop a model for practical, entanglement-based long-distance quantum key distribution employing entanglement swapping as a key building block. Relying only on existing off-the-shelf technology, we show how to optimize resources so as to maximize secret key distribution rates. The tools comprise lossy transmission links, such as telecom optical fibers or free space, parametric down-conversion sources of entangled photon pairs, and threshold detectors that are inefficient and have dark counts. Our analysis provides the optimal trade-off between detector efficiency and dark counts, which are usually competing, as well as the optimal source brightness that maximizes the secret key rate for specified distances (i.e. loss) between sender and receiver.

© 2011 Optical Society of America

OCIS Codes
(270.5565) Quantum optics : Quantum communications
(270.5568) Quantum optics : Quantum cryptography

ToC Category:
Quantum Optics

History
Original Manuscript: January 4, 2011
Revised Manuscript: January 26, 2011
Manuscript Accepted: January 26, 2011
Published: February 1, 2011

Citation
Artur Scherer, Barry C. Sanders, and Wolfgang Tittel, "Long-distance practical quantum key distribution by entanglement swapping," Opt. Express 19, 3004-3018 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-4-3004


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. http://www.idquantique.com, http://www.magiqtech.com.
  2. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002). [CrossRef]
  3. E. Waks, A. Zeevi, and Y. Yamamoto, "Security of quantum key distribution with entangled photons against individual attacks," Phys. Rev. A 65, 052310 (2002). [CrossRef]
  4. B. C. Jacobs, T. B. Pittman, and D. Franson, "Quantum relays and noise suppression using linear optics," Phys. Rev. A 66, 052307 (2002). [CrossRef]
  5. H. de Riedmatten, I. Marcikic, W. Tittel, H. Zbinden, D. Collins, and N. Gisin, "Long Distance Quantum Teleportation in a Quantum Relay Configuration," Phys. Rev. Lett. 92, 047904 (2004). [CrossRef] [PubMed]
  6. D. Collins, N. Gisin, and H. de Riedmatten, "Quantum relays for long distance quantum cryptography," J. Mod. Opt. 52, 735-753 (2005). [CrossRef]
  7. H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, "Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication," Phys. Rev. Lett. 81, 5932-5935 (1998). [CrossRef]
  8. M. Zukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, "‘Event-ready-detectors’ Bell experiment via entanglement swapping," Phys. Rev. Lett. 71, 4287-4290 (1993). [CrossRef] [PubMed]
  9. A. Scherer, G. Howard, B. C. Sanders, and W. Tittel, "Quantum states prepared by realistic entanglement swapping," Phys. Rev. A 80, 062310 (2009). [CrossRef]
  10. V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, "The security of practical quantum key distribution," Rev. Mod. Phys. 81, 1301-1350 (2009). [CrossRef]
  11. G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, "Limitations on Practical Quantum Cryptography," Phys. Rev. Lett. 85, 1330-1333 (2000). [CrossRef] [PubMed]
  12. C. H. Bennett, and G. Brassard, "Quantum cryptography: public key distribution and coin tossing," in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (Institute of Electrical and Electronics Engineers, Bangalore, India, 1984), pp. 175-179.
  13. X. Ma, C.-H. F. Fung, and H.-K. Lo, "Quantum key distribution with entangled photon sources," Phys. Rev. A 76, 012307 (2007). [CrossRef]
  14. I. Marcikic, H. de Riedmatten, W. Tittel, V. Scarani, H. Zbinden, and N. Gisin, "Time-bin entangled qubits for quantum communication created by femtosecond pulses," Phys. Rev. A 66, 062308 (2002). [CrossRef]
  15. H. de Riedmatten, V. Scarani, I. Marcikic, A. Acín, W. Tittel, H. Zbinden, and N. Gisin, "Two independent photon pairs versus four-photon entangled states in parametric down conversion," J. Mod. Opt. 51, 1637-1649 (2004).
  16. C. H. Bennett, G. Brassard, and N. D. Mermin, "Quantum cryptography without Bell’s theorem," Phys. Rev. Lett. 68, 557-559 (1992). [CrossRef] [PubMed]
  17. W.-Y. Hwang, "Quantum Key Distribution with High Loss: Toward Global Secure Communication," Phys. Rev. Lett. 91, 057901 (2003). [CrossRef] [PubMed]
  18. X.-B. Wang, "Beating the Photon-Number-Splitting Attack in Practical Quantum Cryptography," Phys. Rev. Lett. 94, 230503 (2005). [CrossRef] [PubMed]
  19. H.-K. Lo, X. Ma, and K. Chen, "Decoy State Quantum Key Distribution," Phys. Rev. Lett. 94, 230504 (2005). [CrossRef] [PubMed]
  20. X. Ma, B. Qi, Y. Zhao, and H.-K. Lo, "Practical decoy state for quantum key distribution," Phys. Rev. A 72, 012326 (2005). [CrossRef]
  21. X.-B. Wang, "Decoy-state protocol for quantum cryptography with four different intensities of coherent light," Phys. Rev. A 72, 012322 (2005). [CrossRef]
  22. Y. Zhao, B. Qi, X. Ma, H.-K. Lo, and L. Qian, "Experimental Quantum Key Distribution with Decoy States," Phys. Rev. Lett. 96, 070502 (2006). [CrossRef] [PubMed]
  23. N. Lütkenhaus, "Security against individual attacks for realistic quantum key distribution," Phys. Rev. A 61, 052304 (2000). [CrossRef]
  24. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, "Long-distance quantum communication with atomic ensembles and linear optics," Nature 414, 413-418 (2001). [CrossRef] [PubMed]
  25. J. B. Brask, and A. S. Sørensen, "Memory imperfections in atomic-ensemble-based quantum repeaters," Phys. Rev. A 78, 012350 (2008). [CrossRef]
  26. L. Jiang, J. M. Taylor, and M. D. Lukin, "Fast and robust approach to long-distance quantum communication with atomic ensembles," Phys. Rev. A 76, 012301 (2007). [CrossRef]
  27. B. Zhao, Z.-B. Chen, Y.-A. Chen, J. Schmiedmayer, and J.-W. Pan, "Robust creation of entanglement between remote memory qubits," Phys. Rev. Lett. 98, 240502 (2007). [CrossRef] [PubMed]
  28. J. B. Brask, L. Jiang, A. V. Gorshkov, V. Vuletic, A. S. Sørensen, and M. D. Lukin, "Fast entanglement distribution with atomic ensembles and fluorescent detection," Phys. Rev. A 81, 020303 (2010). [CrossRef]
  29. J. Amirloo, M. Razavi, and A. H. Majedi, "Quantum key distribution over probabilistic quantum repeaters," Phys. Rev. A 82, 032304 (2010). [CrossRef]
  30. A. J. Miller, S. W. Nam, J. M. Martinis, and A. V. Sergienko, "Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination," Appl. Phys. Lett. 83, 791-793 (2003). [CrossRef]
  31. D. Rosenberg, A. E. Lita, A. J. Miller, S. W. Nam, and R. E. Schwall, "Performance of photon-number resolving transition-edge sensors with integrated 1550 nm resonant cavities," IEEE Trans. Appl. Supercond. 15(2), 575-578 (2005). [CrossRef]
  32. D. Rosenberg, A. E. Lita, A. J. Miller, and S. W. Nam, "Noise-free high-efficiency photon-number-resolving detectors," Phys. Rev. A 71, 061803 (2005). [CrossRef]
  33. G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705-707 (2001). [CrossRef]
  34. K. M. Rosfjord, J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol’tsman, and K. K. Berggren, "Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating," Opt. Express 14, 527-534 (2006). [CrossRef] [PubMed]
  35. A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, "Kinetic-inductance-limited reset time of superconducting nanowire photon counters," Appl. Phys. Lett. 88, 111116 (2006). [CrossRef]
  36. A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, "Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths," Nat. Photonics 2, 302-306 (2008). [CrossRef]
  37. H. Hübel, M. R. Vanner, T. Lederer, B. Blauensteiner, T. Lorünser, A. Poppe, and A. Zeilinger, "High-fidelity transmission of polarization encoded qubits from an entangled source over 100 km of fiber," Opt. Express 15, 7853-7862 (2007). [CrossRef] [PubMed]
  38. R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, "Entanglement-based quantum communication over 144 km," Nat. Phys. 3, 481-486 (2007). [CrossRef]
  39. M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, "Entangling independent photons by time measurement," Nat. Phys. 3, 692-695 (2007). [CrossRef]
  40. E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussires, M. George, R. Ricken, W. Sohler, and W. Tittel, "Broadband waveguide quantum memory for entangled photons," Nature 469, 512-515 (2011). [CrossRef] [PubMed]
  41. G. B. Xavier, G. Vilela de Faria, G. P. Temporão, and J. P. von der Weid, "Full polarization control for fiber optical quantum communication systems using polarization encoding," Opt. Express 16, 1867-1873 (2008). [CrossRef] [PubMed]
  42. I. Lucio-Martinez, P. Chan, X. Mo, S. Hosier, and W. Tittel, "Proof-of-concept of real-world quantum key distribution with quantum frames," N. J. Phys. 11, 095001 (2009). [CrossRef]
  43. H. de Riedmatten, I. Marcikic, J. A. W. van Houwelingen, W. Tittel, H. Zbinden, and N. Gisin, "Long-distance entanglement swapping with photons from separated sources," Phys. Rev. A 71, 050302 (2005). [CrossRef]
  44. J. G. Rarity, and P. R. Tapster, "Experimental violation of Bell’s inequality based on phase and momentum," Phys. Rev. Lett. 64, 2495-2498 (1990). [CrossRef] [PubMed]
  45. P. W. Shor, and J. Preskill, "Simple Proof of Security of the BB84 Quantum Key Distribution Protocol," Phys. Rev. Lett. 85, 441-444 (2000). [CrossRef] [PubMed]
  46. J. Calsamiglia, and N. Lütkenhaus, "Maximum efficiency of a linear-optical Bell-state analyzer," Appl. Phys. B 72, 67-71 (2001).
  47. G. Brassard, and L. Salvail, "Secret-Key Reconciliation by Public Discussion," in Advances in Cryptology -EUROCRYPT ’93 (Lecture Notes in Computer Science, Vol.765) (Springer, Berlin, 1994), pp. 410-423. [CrossRef]
  48. M. Koashi, and J. Preskill, "Secure Quantum Key Distribution with an Uncharacterized Source," Phys. Rev. Lett. 90, 057902 (2003). [CrossRef] [PubMed]
  49. N. J. Beaudry, T. Moroder, and N. Lütkenhaus, "Squashing Models for Optical Measurements in Quantum Communication," Phys. Rev. Lett. 101, 093601 (2008). [CrossRef] [PubMed]
  50. T. Moroder, O. Gühne, N. J. Beaudry, M. Piani, and N. Lütkenhaus, "Entanglement verification with realistic measurement devices via squashing operations," Phys. Rev. A 81, 052342 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited