OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 4 — Feb. 14, 2011
  • pp: 3019–3036

Simple form of multimode laser diode rate equations incorporating the band filling effect

Kenji Wada, Hiroyuki Yoshioka, Jiaxun Zhu, Tetsuya Matsuyama, and Hiromichi Horinaka  »View Author Affiliations

Optics Express, Vol. 19, Issue 4, pp. 3019-3036 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1753 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



To derive a simple form of the multimode laser diode rate equations incorporating the band filling effect, the laser diode gain in the direct bandgap model is introduced into the conventional multimode laser diode rate equations. By numerically examining each modal gain under the gain-switching condition, it is found that both the differential gain coefficient and the carrier density at transparency show an approximately linear dependency on the oscillation frequency. As a result, it is possible to derive a simple form of the multimode laser diode rate equations with linearized gain, which can be used to simulate the behaviors of a gain-switched laser diode characterized by the band filling effect, in both the multimode and single-mode oscillation cases.

© 2011 Optical Society of America

OCIS Codes
(270.3430) Quantum optics : Laser theory
(300.6170) Spectroscopy : Spectra
(320.1590) Ultrafast optics : Chirping
(320.5390) Ultrafast optics : Picosecond phenomena
(320.5540) Ultrafast optics : Pulse shaping
(250.5960) Optoelectronics : Semiconductor lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: November 29, 2010
Revised Manuscript: January 21, 2011
Manuscript Accepted: January 30, 2011
Published: February 2, 2011

Kenji Wada, Hiroyuki Yoshioka, Jiaxun Zhu, Tetsuya Matsuyama, and Hiromichi Horinaka, "Simple form of multimode laser diode rate equations incorporating the band filling effect," Opt. Express 19, 3019-3036 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Ikegami, K. Kobayashi, and Y. Suematsu, "Transient behaviour of semiconductor injection lasers," Electron. Commun. Jpn. 53B, 82-89 (1970).
  2. P. M. Boers, and M. Danielsen, "Dynamic behaviour of semiconductor lasers," Electron. Lett. 15, 206-208 (1975). [CrossRef]
  3. D. J. Channin, "Effect of gain saturation on injection laser switching," J. Appl. Phys. 50, 3858-3860 (1979). [CrossRef]
  4. R. Lang, and K. Kobayashi, "External optical feedback effects on semiconductor injection laser properties," IEEE J. Quantum Electron. 16, 347-355 (1980). [CrossRef]
  5. S. Tarucha, and K. Otsuka, "Response of semiconductor laser to deep sinusoidal injection current modulation," IEEE J. Quantum Electron. 17, 810-816 (1981). [CrossRef]
  6. C. B. Su, V. Lanzisera, and R. Olshansky, "Measurement of nonlinear gain from FM modulation index of In-GaAsP lasers," Electron. Lett. 21, 893-895 (1985). [CrossRef]
  7. P. M. Downey, J. E. Bowers, R. S. Tucker, and E. Agyekum, "Picosecond dynamics of a gain-switched InGaAsP laser," IEEE J. Quantum Electron. 23, 1039-1047 (1987). [CrossRef]
  8. R. Olshansky, P. Hill, V. Lanzisera, and W. Powazinik, "Frequency response of 1.3 μm InGaAsP high speed semiconductor lasers," IEEE J. Quantum Electron. 23, 1410-1418 (1987). [CrossRef]
  9. K. Y. Lau, "Gain switching of semiconductor injection lasers," Appl. Phys. Lett. 52, 257-259 (1988). [CrossRef]
  10. K. A. Corbett, and M. W. Hamilton, "Comparison of the bifurcation scenarios predicted by the single-mode and multimode semiconductor laser rate equations," Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62, 6487-6495 (2000). [CrossRef]
  11. I. V. Koryukin, and P. Mandel, "Dynamics of semiconductor lasers with optical feedback: Comparison of multimode models in the low-frequency fluctuation regime," Phys. Rev. A 70, 053819 (2004). [CrossRef]
  12. K. Wada, H. Sato, H. Yoshioka, T. Matsuyama, and H. Horinaka, "Suppression of side fringes in low-coherence interferometric measurements using gain- or loss modulated multimode laser diodes," Jpn. J. Appl. Phys. 44, 8484-8490 (2005). [CrossRef]
  13. J. Ohtsubo, Semiconductor Lasers -Stability, Instability and Chaos, Second Ed., (Springer-Verlag, 2007). [PubMed]
  14. C.-C. Lin, H.-C. Kuo, P.-C. Peng, and G.-R. Lin, "Chirp and error rate analyses of an optical-injection gain switching VCSEL based all-optical NZR-to-PRZ converter," Opt. Express 16, 4838-4847 (2008), http:// www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-7-4838. [CrossRef] [PubMed]
  15. T. Mayer, H. Braun, U. T. Schwarz, S. Tautz, M. Schillgalies, S. Lutgen, and U. Strauss, "Spectral dynamics of 405 nm (Al, In) GaN laser diodes grown on GaN and SiC substrate," Opt. Express 16, 6833-6845 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-10-6833. [CrossRef]
  16. K. Wada, S. Takamatsu, H. Watanabe, T. Matsuyama, and H. Horinaka, "Pulse-shaping of gain-switched pulse from multimode laser diode using fiber Sagnac interferometer," Opt. Express 16, 19872-19881 (2008), http: //www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-24-19872. [CrossRef] [PubMed]
  17. C. Chen, G. Ding, B. S. Ooi, L. F. Lester, A. Helmy, T. L. Koch, and J. C. M. Hwang, "Optical injection modulation of quantum-dash semiconductor lasers by intra-cavity stimulated Raman scattering," Opt. Express 18, 6211-6219 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-6-6211. [CrossRef] [PubMed]
  18. W. W. Chow, S. W. Koch, and M. SargentIII, Semiconductor-Laser Physics, (Springer-Verlag, 1994). [CrossRef]
  19. W. W. Chow, and S. W. Koch, Semiconductor-Laser Fundamentals, (Springer-Verlag, 1999).
  20. M. Osinski, and M. J. Adams, "Intrinsic manifestation of regular pulsations in time-averaged spectra of semiconductor lasers," Electron. Lett. 20, 525-526 (1984). [CrossRef]
  21. M. Osinski, and M. J. Adams, "Picosecond pulse analysis of gain-switched 1.55 μm InGaAsP lasers," IEEE J. Quantum Electron. 21, 1929-1936 (1985). [CrossRef]
  22. M. Osinski, D. F. G. Gallagher, and I. H. White, "Measurement of linewidth broadening factor in gain-switched InGaAsP injection lasers by CHP method," Electron. Lett. 21, 981-982 (1985). [CrossRef]
  23. C. H. Henry, "Theory of the linewidth of semiconductor lasers," IEEE J. Quantum Electron. 18, 259-264 (1982). [CrossRef]
  24. B. Sermage, J. P. Heritage, and N. K. Dutta, "Temperature dependence of carrier lifetime and Auger recombination in 1.3 μm InGaAsP," J. Appl. Phys. 57, 5443-5449 (1985). [CrossRef]
  25. B. W. Hakki, "Optical and microwave instabilities in injection lasers," J. Appl. Phys. 51, 68-73 (1980). [CrossRef]
  26. P.-L. Liu, C. Lin, I. P. Kaminow, and J. J. Hsieh, "Picosecond pulse generation from InGaAsP lasers at 1.25 and 1.3 μm by electrical pulse pumping," IEEE J. Quantum Electron. 17, 671-674 (1981). [CrossRef]
  27. G. Lasher, and F. Stern, "Spontaneous and stimulated recombination radiation in semiconductors," Phys. Rev. 133, A553-A563 (1964). [CrossRef]
  28. T. Suhara, Semiconductor laser fundamentals (Kyoritsu, 1998), Chap. 3. in Japanese.
  29. W. B. Joyce, and R. W. Dixon, "Analytic approximations for the Fermi energy of an ideal Fermi gas," Appl. Phys. Lett. 31, 354-356 (1977). [CrossRef]
  30. A. E. Siegman, Lasers (University science books, 1986), Chap. 26.
  31. R. A. Linke, "Modulation induced transient chirping in single frequency lasers," IEEE J. Quantum Electron. 21, 593-597 (1985). [CrossRef]
  32. K. Wada, J. Fujita, J. Yamada, T. Matsuyama, and H. Horinaka, "Simple method for estimating shape functions of optical spectra," Opt. Commun. 281, 368-373 (2008). [CrossRef]
  33. F. Stern, "Band-tail model for optical absorption and for the mobility edge in amorphous silicon," Phys. Rev. B 3, 2636-2645 (1971). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited