OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 4 — Feb. 14, 2011
  • pp: 3037–3043

A planar ion trapping microdevice with integrated waveguides for optical detection

Linan Jiang, William B. Whitten, and Stanley Pau  »View Author Affiliations

Optics Express, Vol. 19, Issue 4, pp. 3037-3043 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (949 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A planar ion trap with an integrated waveguide was fabricated and characterized. The microdevice, consisting of a 1 mm-diameter one-hole ring trap and multi-mode optical waveguides, was made on a glass wafer using microfabrication techniques. The experimental results demonstrate that the microdevice can trap 1.5 μm- to 150 μm-diameter charged particles in air under an alternating electric field with the amplitude and frequency varying from 100 V to 750 V, and 100 Hz to 700 Hz, respectively. The on-chip waveguide is capable of detecting the presence of a particle in the trap, and the particle secular motion frequency was found to depend on the input alternating signal amplitude and frequency.

© 2011 OSA

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(130.0130) Integrated optics : Integrated optics
(300.0300) Spectroscopy : Spectroscopy
(300.6520) Spectroscopy : Spectroscopy, trapped ion
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Integrated Optics

Original Manuscript: December 3, 2010
Revised Manuscript: January 11, 2011
Manuscript Accepted: January 19, 2011
Published: February 2, 2011

Linan Jiang, William B. Whitten, and Stanley Pau, "A planar ion trapping microdevice with integrated waveguides for optical detection," Opt. Express 19, 3037-3043 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Kim and C. Kim, “Integrated optical approach to trapped ion quantum computation,” Quant. Inform. Comp. 9, 181–202 (2009).
  2. H.-C. Chang, “Ultrahigh-mass mass spectrometry of single biomolecules and bioparticles,” Annu Rev Anal Chem (Palo Alto Calif) 2(1), 169–185 (2009). [CrossRef]
  3. J. Meinen, S. Khasminskaya, E. Ruhl, W. Baumann, and T. Leisner, “The TRAPS apparatus: enhancing target density of nanoparticle beams in vacuum for X-ray and optical spectroscopy,” Aerosol Sci. Technol. 44(4), 316–328 (2010). [CrossRef]
  4. A. P. VanDevender, Y. Colombe, J. Amini, D. Leibfried, and D. J. Wineland, “Efficient fiber optic detection of trapped ion fluorescence,” Phys. Rev. Lett. 105(2), 023001 (2010). [CrossRef] [PubMed]
  5. S. A. Smith, C. C. Mulligan, Q. Song, R. J. Noll, R. G. Cooks, and Z. Ouyang, “Ion traps for miniature, multiplexed and soft-landing technologies,” Practical Aspects of Trapped Ion Mass Spectrometry, Vol. IV, 169–250, ed. R. E. March, J. F. J. Todd, CRC Press (2010).
  6. Al. A. Kolomenskii, S. N. Jerebtsov, J. A. Stoker, M. O. Scully, and H. A. Schuessler, “Storage and light scattering of microparticles in ring-type electrodynamics trap,” J. Appl. Phys. 102, 094902 (2007). [CrossRef]
  7. C. E. Pearson, D. R. Leibrandt, W. S. Bakr, W. J. Mallard, K. R. Brown, and I. L. Chuang, “Experimental investigation of planar ion traps,” Phys. Rev. A 73, 032307 (2006). [CrossRef]
  8. K. Cheung, L. F. Velasquez-Garcia, and A. I. Akinwande, “Chip-scale quadrupole mass filters for portable mass spectrometry,” J. Microelectromech. Syst. 19(3), 469–483 (2010). [CrossRef]
  9. S. Pau, W. B. Whitten, and J. M. Ramsey, “Planar geometry for trapping and separating ions and charged particles,” Anal. Chem. 79(17), 6857–6861 (2007). [CrossRef] [PubMed]
  10. J.-Y. Wan, Q.-Z. Qu, Z.-C. Zhou, X.-L. Li, Y.-Z. Wang, and L. Liu, “Surface planar ion chip for linear radio-frequency paul traps,” Chin. Phys. Lett. 24(95), 1238–1241 (2007). [CrossRef]
  11. D. E. Austin, M. Wang, S. E. Tolley, J. D. Maas, A. R. Hawkins, A. L. Rockwood, H. D. Tolley, E. D. Lee, and M. L. Lee, “Halo ion trap mass spectrometer,” Anal. Chem. 79(7), 2927–2932 (2007). [CrossRef] [PubMed]
  12. L. Jiang and S. Pau, “Integrated waveguide with a microfluidic channel in spiral geometry for spectroscopic applications,” Appl. Phys. Lett. 90(11), 111108 (2007). [CrossRef]
  13. Y. Cai, W.-P. Peng, S.-J. Kuo, Y.-T. Lee, and H.-C. Chang, “Single-particle mass spectrometry of polystyrene microspheres and diamond nanocrystals,” Anal. Chem. 74(1), 232–238 (2002). [CrossRef] [PubMed]
  14. X. Meng, J. Zhu, and H. Zhang, “Influences of different powders on the characteristics of particle charging and deposition in powder coating processes,” J. Electrost. 67(4), 663–671 (2009). [CrossRef]
  15. Y. Cai, W.-P. Peng, S.-J. Kuo, and H.-C. Chang, “Calibration of an audio-frequency ion trap mass spectrometer,” Int. J. Mass Spectrom. 214(1), 63–73 (2002). [CrossRef]
  16. R. G. Brewer, R. G. DeVoe, and R. Kallenbach, “Planar ion microtrap,” Phys. Rev. A 46(11),R 6781–6785 (1992). [CrossRef]
  17. R. F. Wuerker, H. Shelton, and R. V. Langmuir, “Electrodynamics containment of charged particles,” Appl. Phys. 30(3), 342–349 (1959). [CrossRef]
  18. S. R. Jefferts, C. Monroe, A. S. Barton, and D. J. Wineland, “Paul trap for optical frequency standards,” IEEE Trans. Instrum. Meas. 44(2), 148–150 (1995). [CrossRef]
  19. S. Arnold and N. Hessel, “Photoemission from single electrodynamically levitated microparticles,” Rev. Sci. Instrum. 56(11), 2066–2069 (1985). [CrossRef]
  20. J. F. Spann, M. M. Abbas, C. C. Venturini, and R. H. Comfort, “Electrodynamic balance for studies of cosmic dust particles,” Phys. Scr. T 89(1), 147–153 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited