OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 4 — Feb. 14, 2011
  • pp: 3063–3076

Polarization-insensitive subwavelength sharp bends in asymmetric metal/multi-insulator configuration

Yin-Jung Chang and You-Chang Liu  »View Author Affiliations

Optics Express, Vol. 19, Issue 4, pp. 3063-3076 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1104 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new silicon-based sharp waveguide bend in asymmetric metal/multi-insulator configuration is described. TE and TM modes are calculated rigorously electromagnetically from which the general design rules are derived. Numerical simulations show that the respective insertion losses of < 0.085 dB and < 0.229 dB for TE and TM modes can be achieved by introducing a low-index layer between the metal and high-index core. The bending length is determined by the TE mode and has much smaller impacts on the TM that exhibits no resonance-like behavior as does the TE. The combined TE modal and radiation power in the air region is shown to couple back to the Si core through an asymmetric output taper, yielding a high transmission efficiency. Structure-enabled successive photonic-plamsonic mode conversions are shown to increase the TM mode confinement in the high-index core while the plasmonic mode carries up to 42.6% of the input power along the bending section.

© 2011 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Integrated Optics

Original Manuscript: December 7, 2010
Revised Manuscript: January 27, 2011
Manuscript Accepted: January 27, 2011
Published: February 2, 2011

Yin-Jung Chang and You-Chang Liu, "Polarization-insensitive subwavelength sharp bends in asymmetric metal/multi-insulator configuration," Opt. Express 19, 3063-3076 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003). [CrossRef] [PubMed]
  2. D. K. Gramotnev, and S. I. Bozhevolnyi, "Plasmonics beyond the diffraction limit," Nat. Photonics 4, 83-91 (2010). [CrossRef]
  3. E. A. J. Marcatili, "Bends in optical dielectric waveguides," Bell Syst. Tech. J. 48, 2103-2132 (1969).
  4. I. C. Goyal, R. L. Gallawa, and A. K. Ghatak, "Bent planar waveguides and whispering gallery modes: A new method of analysis," J. Lightwave Technol. 8, 768-774 (1990). [CrossRef]
  5. D. R. Mason, D. K. Gramotnev, and K. S. Kim, "Wavelength-dependent transmission through sharp 90◦ bends in sub-wavelength metallic slot waveguides," Opt. Express 18, 16139-16145 (2010). [CrossRef] [PubMed]
  6. J. Yamauchi, S. Kikuchi, T. Hirooka, and H. Nakano, "Beam-propagation analysis of bent step-index slab waveguides," Electron. Lett. 26, 822-824 (1990). [CrossRef]
  7. L. H. Spiekman, Y. S. Oei, E. G. Metaal, F. H. Groen, P. Demeester, and M. K. Smit, "Ultrasmall waveguide bends: The corner mirrors of the future?" Proc. Inst. Elect. Eng.-Optoelectronics 142, 61-65 (1995). [CrossRef]
  8. Y. Z. Tang, W. H. Wang, T. Li, and Y. L. Wang, "Integrated waveguide turning mirror in silicon-on-insulator," IEEE Photon. Technol. Lett. 14, 68-70 (2002). [CrossRef]
  9. M. Popovič, K. Wada, S. Akiyama, H. A. Haus, and J. Michel, "Air trenches for sharp silica waveguide bends," J. Lightwave Technol. 16, 1762-1772 (2008).
  10. S. Wiechmann, H. J. Heider, and J. Müller, "Analysis and design of integrated optical mirrors in planar waveguide technology," J. Lightwave Technol. 21, 1584-1591 (2003). [CrossRef]
  11. L. Li, G. P. Nordin, J. M. English, and J. Jiang, "Small-area bends and beamsplitters for low-index-contrast waveguides," Opt. Express 11, 282-290 (2003). [CrossRef] [PubMed]
  12. Y. Qian, S. Kim, J. Song, G. P. Nordin, and J. Jiang, "Compact and low loss silicon-on-insulator rib waveguide 90◦ bend," Opt. Express 14, 6020-6028 (2006). [CrossRef] [PubMed]
  13. C. Ma, Q. Zhang, and E. V. Keuren, "Right-angle slot waveguide bends with high bending efficiency," Opt. Express 16, 14330-14334 (2008). [CrossRef] [PubMed]
  14. R. Espinola, R. Ahmad, F. Pizzuto, M. Steel, and R. Osgood, "A study of high-index-contrast 90◦ waveguide bend structures," Opt. Express 8, 517-528 (2001). [CrossRef] [PubMed]
  15. R. U. Ahmad, F. Pizzuto, G. S. Camarda, R. L. Espinola, H. Rao, and R. M. Osgood, Jr., "Ultracompact cone mirrors and T-branches in silicon-on-insulator," IEEE Photon. Technol. Lett. 14, 65-67 (2002). [CrossRef]
  16. D. Sun, X. Li, D. Wong, Y. Hu, F. Luo, and T. J. Hall, "Modeling and numerical analysis for silicon-on-insulator rib waveguide corners," J. Lightwave Technol. 27, 4610-4618 (2009). [CrossRef]
  17. C. Manolatou, S. G. Johnson, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "High-density integrated optics," J. Lightwave Technol. 17, 1682-1692 (1999). [CrossRef]
  18. G. P. Nordin, S. Kim, J. Cai, and J. Jiang, "Hybrid integration of conventional waveguide and photonic crystal structures," Opt. Express 10, 1334-1341 (2002). [PubMed]
  19. G. Veronis, and S. Fan, "Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides," Appl. Phys. Lett. 87, 131102 (2005). [CrossRef]
  20. J.-C. Weeber, M. U. Gonzalez, A.-L. Baudrion, and A. Dereux, "Surface plasmon routing along right angle bent metal strips," Appl. Phys. Lett. 87, 221101 (2005). [CrossRef]
  21. D. F. P. Pile, and D. K. Gramotnev, "Plasmonic subwavelength waveguides: next to zero losses at sharp bends," Opt. Lett. 30, 1186-1188 (2005). [CrossRef] [PubMed]
  22. T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereus, A. V. Krasavin, and A. V. Zayats, "Bend-and splitting loss of dielectric-loaded surface plasmon-polariton waveguides," Opt. Express 16, 13585-13592 (2008). [CrossRef] [PubMed]
  23. Y.-J. Chang, T. K. Gaylord, and G.-K. Chang, "Attenuation in waveguides on FR-4 boards due to periodic substrate undulations," Appl. Opt. 46, 2234-2243 (2007). [CrossRef] [PubMed]
  24. Y.-J. Chang, and Y.-C. Liu, "A plasmonic-mode-assisted sharp waveguide bend for silicon optical nanocircuitry," IEEE Photon. Technol. Lett. 23, 121-123 (2011). [CrossRef]
  25. D. L. Lee, Electromagnetic Principles of Integrated Optics (John Wiley & Sons, Inc., 1986).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited