OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 4 — Feb. 14, 2011
  • pp: 3115–3123

Generation of paired photons in a quantum separable state in Bragg reflection waveguides

Jiří Svozilík, Martin Hendrych, Amr S. Helmy, and Juan P. Torres  »View Author Affiliations

Optics Express, Vol. 19, Issue 4, pp. 3115-3123 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (802 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This work proposes and analyses a novel approach for the generation of separable (quantum uncorrelated) photon pairs based on spontaneous parametric down-conversion in Bragg reflection waveguides composed of semiconductor AlGaN layers. This platform allows the removal of any spectral correlation between paired photons that propagate in different spatial modes. The photons can be designed to show equal or different spectra by tuning the structural parameters and hence the dispersion of the waveguide.

© 2011 Optical Society of America

OCIS Codes
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(270.0270) Quantum optics : Quantum optics

ToC Category:
Nonlinear Optics

Original Manuscript: November 17, 2010
Revised Manuscript: January 19, 2011
Manuscript Accepted: January 26, 2011
Published: February 2, 2011

Jirí Svozilík, Martin Hendrych, Amr S. Helmy, and Juan P. Torres, "Generation of paired photons in a quantum separable state in Bragg reflection waveguides," Opt. Express 19, 3115-3123 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. P. Rohde, G. J. Pryde, J. L. O’Brien, and T. C. Ralph, "Quantum gate characterization in an extended Hilbert space," Phys. Rev. A 72, 032306 (2005). [CrossRef]
  2. I. A. Walmsley, and M. G. Raymer, "Toward quantum-information processing with photons," Science 307, 1733 (2005). [CrossRef] [PubMed]
  3. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, "Linear optical quantum computing," Rev. Mod. Phys. 79, 135 (2007). [CrossRef]
  4. L. E. Vicent, A. B. U’Ren, R. Rangarajan, C. I. Osorio, J. P. Torres, L. Zhang, and I. A. Walmsley, "Design of bright, fiber-coupled and fully factorable photon pair sources," N. J. Phys. 12, 093027 (2010). [CrossRef]
  5. T. Aichele, A. I. Lvovsky, and S. Schiller, "Optical mode characterization of single photons prepared by means of conditional measurements on a biphoton state," Eur. Phys. J. D 18, 237 (2002). [CrossRef]
  6. W. P. Grice, A. B. U’Ren, and I. A. Walmsley, "Eliminating frequency and space-time correlation in multiphoton states," Phys. Rev. A 64, 063815 (2001). [CrossRef]
  7. P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, "Heralded generation of ultrafast single photons in pure quantum states," Phys. Rev. Lett. 100, 133601 (2008). [CrossRef] [PubMed]
  8. J. P. Torres, F. Macià, S. Carrasco, and L. Torner, "Engineering the frequency correlations of entangled two photon states by achromatic phase matching," Opt. Lett. 30, 314 (2005). [CrossRef] [PubMed]
  9. M. Hendrych, M. Mičuda, and J. P. Torres, "Tunable control of the frequency correlations of entangled photons," Opt. Lett. 32, 2339 (2007). [CrossRef]
  10. J. P. Torres, M. Hendrych, and A. Valencia, "Angular dispersion: an enabling tool in nonlinear and quantum optics," Adv. Opt. Photon. 2, 319 (2010). [CrossRef]
  11. Z. D. Walton, M. C. Booth, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, "Controllable frequency entanglement via auto-phase-matched spontaneous parametric down-conversion," Phys. Rev. A 67, 053810 (2003). [CrossRef]
  12. A. B. U’Ren, K. Banaszek, and I. A. Walmsley, "Photon engineering for quantum information processing," Quantum Inf. Comput. 3, 480 (2003).
  13. S. Carrasco, J. P. Torres, L. Torner, A. V. Sergienko, B. E. Saleh, and M. C. Teich, "Spatial-to-spectral mapping in spontaneous parametric down-conversion," Phys. Rev. A 70, 043817 (2004). [CrossRef]
  14. A. Valencia, A. Ceré, X. Shi, G. Molina-Terriza, and J. P. Torres, "Shaping the waveform of entangled photons," Phys. Rev. Lett. 99, 243601 (2007). [CrossRef]
  15. X. Shi, A. Valencia, M. Hendrych, and J. Torres, "Generation of indistinguishable and pure heralded single photons with tunable bandwidth," Opt. Lett. 33, 875 (2008). [CrossRef] [PubMed]
  16. A. B. U’Ren, R. K. Erdmann, M. de la Cruz-Gutierrez, and I. A. Walmsley, "Generation of Two-Photon States with an Arbitrary Degree of Entanglement Via Nonlinear Crystal Superlattices," Phys. Rev. Lett. 97, 223602 (2006). [CrossRef]
  17. B. R. West, and A. S. Helmy, "Dispersion tailoring of the quarter-wave Bragg reflection waveguide," Opt. Express 14, 4073 (2006). [CrossRef] [PubMed]
  18. P. Abolghasem, M. Hendrych, X. Shi, J. P. Torres, and A. Helmy, "Bandwidth control of paired photons generated in monolithic Bragg reflection waveguides," Opt. Lett. 34, 2000 (2009). [CrossRef] [PubMed]
  19. Notice that here Ep(ωs + ωi) refers to the spectral amplitude of the pump beam at the input face of the waveguide, while the operators as(ω0s + Ωs) and ai(ω0i + Ωi) refer to the quantum state at the output face of the waveguide. Under these conditions (see [8]), the exponential factor contained in the biphoton amplitude is of the form exp(iskL/2). Different definitions of Ep and as and ai lead to slightly different expressions for the exponential factor of the biphoton amplitude. This is the case, for instance, in [6], where Ep refers to the spectral amplitude of the pump beam at the output face of the nonlinear crystal, while the same definition of the quantum operators as and ai is used. Now the exponential factor contained in the biphoton amplitude is of the form exp(−iΔkL/2). Indeed, when Ep and the quantum operators are referred to the center of the nonlinear crystal, there is no exponential factor at all [see S. P. Walborn, A. N. de Oliveira, S. Padua, and C. H. Monken, "Multimode Hong-Ou-Mandel interference," Phys. Rev. Lett. 90, 143601 (2003)]. Of course, all of these expressions are related and should yield the same result when calculating correlation functions, since the electric field operators should also be correspondingly modified in each case. [CrossRef] [PubMed]
  20. A. Ekert, and P. L. Knight, "Entangled quantum systems and the Schmidt decomposition," Am. J. Phys. 63, 415 (1995). [CrossRef]
  21. J. H. Eberly, "Schmidt analysis of pure-state entanglement," Laser Phys. 16, 921 (2006). [CrossRef]
  22. J. Jin, The Finite Element Method in Electromagnetics, 2nd ed. (Wiley-IEEE Press, 2002).
  23. G. M. Laws, E. C. Larkins, I. Harrison, C. Molloy, and D. Somerford, "Improved refractive index formulas for the AlxGa1−xN and InyGa1−yN alloys," J. Appl. Phys. 89, 1108 (2001). [CrossRef]
  24. S. Pezzagna, P. Vennéguès, N. Grandjean, A. D. Wieck, and J. Massies, "Submicron periodic poling and chemical patterning of GaN," Appl. Phys. Lett. 87, 062106 (2005). [CrossRef]
  25. M. A. Nielsen, and I. L. Chuang, Quantum Computation and Quantum Information, (Cambridge University Press, 2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited