OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 4 — Feb. 14, 2011
  • pp: 3124–3129

In-fiber modal Mach-Zehnder interferometer based on the locally post-processed core of a photonic crystal fiber

Rodrigo M. Gerosa, Danilo H. Spadoti, Leonardo de S. Menezes, and Christiano J. S. de Matos  »View Author Affiliations

Optics Express, Vol. 19, Issue 4, pp. 3124-3129 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1187 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a novel, compact and low-loss photonic crystal fiber modal Mach-Zehnder interferometer with potential applications to sensing and WDM telecommunications. By selectively collapsing a ~1-mm-long section of a hole next to the solid core, a pair of modes of the post-processed structure are excited and interfere at its exit. A modulation depth of up to ~13 dB and an insertion loss as low as 2.8 dB were achieved. A temperature sensitivity of −53.4 pm/°C was measured, making the device suitable for temperature sensing.

© 2011 OSA

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: January 3, 2011
Revised Manuscript: January 29, 2011
Manuscript Accepted: January 29, 2011
Published: February 2, 2011

Rodrigo M. Gerosa, Danilo H. Spadoti, Leonardo de S. Menezes, and Christiano J. S. de Matos, "In-fiber modal Mach-Zehnder interferometer based on the locally post-processed core of a photonic crystal fiber," Opt. Express 19, 3124-3129 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. St. J. Russell, “Photonic-Crystal Fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006). [CrossRef]
  2. H. C. Nguyen, B. T. Kuhlmey, E. C. Magi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, “Tapered photonic crystal fibers: Properties, characterization and applications,” Appl. Phys. B 81(2-3), 377–387 (2005). [CrossRef]
  3. H. Bartelt, H. Lehmann, R. Willsch, R. Spittel, J. Mörbitz, and M. Balakrishnan, “Enhanced functionality by selective filling of microstructured optical fibers,” Proc. SPIE 7839, 783909, 783909-4 (2010). [CrossRef]
  4. A. Witkowska, K. Lai, S. G. Leon-Saval, W. J. Wadsworth, and T. A. Birks, “All-fiber anamorphic core-shape transitions,” Opt. Lett. 31(18), 2672–2674 (2006). [CrossRef] [PubMed]
  5. K. Lai, S. G. Leon-Saval, A. Witkowska, W. J. Wadsworth, and T. A. Birks, “Wavelength-independent all-fiber mode converters,” Opt. Lett. 32(4), 328–330 (2007). [CrossRef] [PubMed]
  6. J. Villatoro, V. P. Minkovich, and D. Monzón-Hernández, “Compact Modal Interferometer Built with Tapered Microstructured Optical Fiber,” IEEE Photon. Technol. Lett. 18(11), 1258–1260 (2006). [CrossRef]
  7. J. Villatoro, V. P. Minkovich, V. Pruneri, and G. Badenes, “Simple all-microstructured-optical-fiber interferometer built via fusion splicing,” Opt. Express 15(4), 1491–1496 (2007). [CrossRef] [PubMed]
  8. H. Y. Choi, K. S. Park, and B. H. Lee, “Photonic crystal fiber interferometer composed of a long period fiber grating and one point collapsing of air holes,” Opt. Lett. 33(8), 812–814 (2008). [CrossRef] [PubMed]
  9. J. H. Lim, H. S. Jang, K. S. Lee, J. C. Kim, and B. H. Lee, “Mach-Zehnder interferometer formed in a photonic crystal fiber based on a pair of long-period fiber gratings,” Opt. Lett. 29(4), 346–348 (2004). [CrossRef] [PubMed]
  10. J. Du, Y. Dai, G. K. P. Lei, W. Tong, and C. Shu, “Photonic crystal fiber based Mach-Zehnder interferometer for DPSK signal demodulation,” Opt. Express 18(8), 7917–7922 (2010). [CrossRef] [PubMed]
  11. H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express 15(9), 5711–5720 (2007). [CrossRef] [PubMed]
  12. J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007). [CrossRef]
  13. W. J. Bock, T. A. Eftimov, P. Mikulic, and J. Chen, “An inline core-cladding intermodal interferometer using a photonic crystal fiber,” J. Lightwave Technol. 27(17), 3933–3939 (2009). [CrossRef]
  14. S. H. Aref, R. Amezcua-Correa, J. P. Carvalho, O. Frazão, P. Caldas, J. L. Santos, F. M. Araújo, H. Latifi, F. Farahi, L. A. Ferreira, and J. C. Knight, “Modal interferometer based on hollow-core photonic crystal fiber for strain and temperature measurement,” Opt. Express 17(21), 18669–18675 (2009). [CrossRef]
  15. G. Coviello, V. Finazzi, J. Villatoro, and V. Pruneri, “Thermally stabilized PCF-based sensor for temperature measurements up to 1000°C,” Opt. Express 17(24), 21551–21559 (2009). [CrossRef] [PubMed]
  16. R. Jha, J. Villatoro, G. Badenes, and V. Pruneri, “Refractometry based on a photonic crystal fiber interferometer,” Opt. Lett. 34(5), 617–619 (2009). [CrossRef] [PubMed]
  17. J. Villatoro, M. P. Kreuzer, R. Jha, V. P. Minkovich, V. Finazzi, G. Badenes, and V. Pruneri, “Photonic crystal fiber interferometer for chemical vapor detection with high sensitivity,” Opt. Express 17(3), 1447–1453 (2009). [CrossRef] [PubMed]
  18. B. H. Lee and J. Nishii, “Dependence of fringe spacing on the grating separation in a long-period fiber grating pair,” Appl. Opt. 38(16), 3450–3459 (1999). [CrossRef]
  19. J. Ju, H. F. Xuan, W. Jin, S. Liu, and H. L. Ho, “Selective opening of airholes in photonic crystal fiber,” Opt. Lett. 35(23), 3886–3888 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited