OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 4 — Feb. 14, 2011
  • pp: 3185–3192

All silicon waveguide spherical microcavity coupler device

E. Xifré-Pérez, J.D. Domenech, R. Fenollosa, P. Muñoz, J. Capmany, and F. Meseguer  »View Author Affiliations


Optics Express, Vol. 19, Issue 4, pp. 3185-3192 (2011)
http://dx.doi.org/10.1364/OE.19.003185


View Full Text Article

Enhanced HTML    Acrobat PDF (1014 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A coupler based on silicon spherical microcavities coupled to silicon waveguides for telecom wavelengths is presented. The light scattered by the microcavity is detected and analyzed as a function of the wavelength. The transmittance signal through the waveguide is strongly attenuated (up to 25 dB) at wavelengths corresponding to the Mie resonances of the microcavity. The coupling between the microcavity and the waveguide is experimentally demonstrated and theoretically modeled with the help of FDTD calculations.

© 2011 OSA

OCIS Codes
(140.3945) Lasers and laser optics : Microcavities
(130.7408) Integrated optics : Wavelength filtering devices

ToC Category:
Integrated Optics

History
Original Manuscript: November 5, 2010
Revised Manuscript: January 9, 2011
Manuscript Accepted: January 13, 2011
Published: February 3, 2011

Citation
E. Xifré-Pérez, J.D. Domenech, R. Fenollosa, P. Muñoz, J. Capmany, and F. Meseguer, "All silicon waveguide spherical microcavity coupler device," Opt. Express 19, 3185-3192 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-4-3185


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Cai, O. Painter, K. J. Vahala, and P. C. Sercel, “Fiber-coupled microsphere laser,” Opt. Lett. 25(19), 1430–1432 (2000). [CrossRef]
  2. J. C. Knight, N. Dubreuil, V. Sandoghdar, J. Hare, V. Lefèvre-Seguin, J. M. Raimond, and S. Haroche, “Mapping whispering-gallery modes in microspheres with a near-field probe,” Opt. Lett. 20(14), 1515–1517 (1995). [CrossRef] [PubMed]
  3. V. Lefevre-Seguin and S. Haroche, “Towards cavity-QED experiments with silica microspheres,” Mater. Sci. Eng. B 48(1-2), 53–58 (1997). [CrossRef]
  4. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21(7), 453–455 (1996). [CrossRef] [PubMed]
  5. D. W. Vernooy, V. S. Ilchenko, H. Mabuchi, E. W. Streed, and H. J. Kimble, “High-Q measurements of fused-silica microspheres in the near infrared,” Opt. Lett. 23(4), 247–249 (1998). [CrossRef]
  6. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003). [CrossRef] [PubMed]
  7. A. Serpengüzel and A. Demir, “Silicon Microspheres for Near-IR-Communication Applications,” Semicond. Sci. Technol. 23(6), 064009 (2008). [CrossRef]
  8. D. H. Broaddus, M. A. Foster, I. H. Agha, J. T. Robinson, M. Lipson, and A. L. Gaeta, “Silicon-waveguide-coupled high-Q chalcogenide microspheres,” Opt. Express 17(8), 5998–6003 (2009). [CrossRef] [PubMed]
  9. Y. O. Yilmaz, A. Demir, A. Kurt, and A. Serpengüzel, “Optical Channel Dropping With a Silicon Microsphere,” IEEE Photon. Technol. Lett. 17(8), 1662–1664 (2005). [CrossRef]
  10. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004). [CrossRef] [PubMed]
  11. S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000). [CrossRef] [PubMed]
  12. R. Fenollosa, F. Meseguer, and M. Tymczenko, “Silicon Colloids: from microcavities to photonic sponges,” Adv. Mater. (Deerfield Beach Fla.) 20(1), 95–98 (2008). [CrossRef]
  13. M. Tymczenko, PhD Thesis, March 2010.
  14. E. Xifré-Pérez, R. Fenollosa, and F. Meseguer, “Low order modes in microcavities based on silicon colloids,” Opt. Express . in press. [PubMed]
  15. E. Xifré-Pérez, F. J. García de Abajo, R. Fenollosa, and F. Meseguer, “Photonic binding in silicon-colloid microcavities,” Phys. Rev. Lett. 103(10), 103902 (2009). [CrossRef] [PubMed]
  16. P. R. Conwell, P. W. Barber, and C. K. Rushforth, “Resonant spectra of dielectric spheres,” J. Opt. Soc. Am. A 1(1), 62–67 (1984). [CrossRef]
  17. C. F. Bohren, and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 1998).
  18. P. W. Barber, and S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, 1990).
  19. E. Palik, Handbook of Optical Constants of Solids, Vol. 1 (Academic Press, 1985).
  20. F. J. García de Abajo, “Multiple Scattering of Radiation in Clusters of Dielectrics,” Phys. Rev. B 60(8), 6086–6102 (1999). [CrossRef]
  21. J. P. Laine, C. Tapalian, B. Little, and H. Haus, “Acceleration Sensor Based on High-Q Optical Microsphere Resonator and Pedestal Antiresonant Reflecting Waveguide Coupler,” Sens. Actuators A Phys. 93(1), 1–7 (2001). [CrossRef]
  22. K. Vahala, Optical Microcavities (World Scientific Publishing, 2004).
  23. Y. Panitchob, G. S. Murugan, M. N. Zervas, P. Horak, S. Berneschi, S. Pelli, G. Nunzi Conti, and J. S. Wilkinson, “Whispering gallery mode spectra of channel waveguide coupled microspheres,” Opt. Express 16(15), 11066–11076 (2008). [CrossRef] [PubMed]
  24. D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(No. 8A), 6071–6077 (2006). [CrossRef]
  25. T. Mukaiyama, K. Takeda, H. Miyazaki, Y. Jimba, and M. Kuwata-Gonokami, “Tight-Binding Photonic Molecule Modes of Resonant Bispheres,” Phys. Rev. Lett. 82(23), 4623–4626 (1999). [CrossRef]
  26. D. D. Smith, H. Chang, and K. A. Fuller, “Whispering-Gallery Mode Splitting in Coupled Microresonators,” J. Opt. Soc. Am. B 20(9), 1967–1974 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

Multimedia

Multimedia FilesRecommended Software
» Media 1: MPG (3610 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited