OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 4 — Feb. 14, 2011
  • pp: 3226–3235

Minimizing detection errors in single molecule localization microscopy

Pavel Křížek, Ivan Raška, and Guy M. Hagen  »View Author Affiliations

Optics Express, Vol. 19, Issue 4, pp. 3226-3235 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1410 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Fluorescence microscopy using single molecule imaging and localization (PALM, STORM, and similar approaches) has quickly been adopted as a convenient method for obtaining multicolor, 3D superresolution images of biological samples. Using an approach based on extensive Monte Carlo simulations, we examined the performance of various noise reducing filters required for the detection of candidate molecules. We determined a suitable noise reduction method and derived an optimal, nonlinear threshold which minimizes detection errors introduced by conventional algorithms. We also present a new technique for visualization of single molecule localization microscopy data based on adaptively jittered 2D histograms. We have used our new methods to image both Atto565-phalloidin labeled actin in fibroblast cells, and mCitrine-erbB3 expressed in A431 cells. The enhanced methods developed here were crucial in processing the data we obtained from these samples, as the overall signal to noise ratio was quite low.

© 2011 OSA

OCIS Codes
(000.5490) General : Probability theory, stochastic processes, and statistics
(100.6640) Image processing : Superresolution
(180.2520) Microscopy : Fluorescence microscopy

ToC Category:

Original Manuscript: December 9, 2010
Revised Manuscript: January 21, 2011
Manuscript Accepted: January 25, 2011
Published: February 3, 2011

Virtual Issues
Vol. 6, Iss. 3 Virtual Journal for Biomedical Optics

Pavel Křížek, Ivan Raška, and Guy M. Hagen, "Minimizing detection errors in single molecule localization microscopy," Opt. Express 19, 3226-3235 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Huang, M. Bates, and X. Zhuang, “Super-resolution fluorescence microscopy,” Annu. Rev. Biochem. 78(1), 993–1016 (2009). [CrossRef] [PubMed]
  2. D. Baddeley, I. D. Jayasinghe, C. Cremer, M. B. Cannell, and C. Soeller, “Light-induced dark states of organic fluochromes enable 30 nm resolution imaging in standard media,” Biophys. J. 96(2), L22–L24 (2009). [CrossRef] [PubMed]
  3. P. Lemmer, M. Gunkel, D. Baddeley, R. Kaufmann, A. Urich, Y. Weiland, J. Reymann, P. Müller, M. Hausmann, and C. Cremer, “SPDM: light microscopy with single-molecule resolution at the nanoscale,” Appl. Phys B 93(1), 1–12 (2008). [CrossRef]
  4. P. Lemmer, M. Gunkel, Y. Weiland, P. Müller, D. Baddeley, R. Kaufmann, A. Urich, H. Eipel, R. Amberger, M. Hausmann, and C. Cremer, “Using conventional fluorescent markers for far-field fluorescence localization nanoscopy allows resolution in the 10-nm range,” J. Microsc. 235(2), 163–171 (2009). [CrossRef] [PubMed]
  5. A. Egner, C. Geisler, C. von Middendorff, H. Bock, D. Wenzel, R. Medda, M. Andresen, A. C. Stiel, S. Jakobs, C. Eggeling, A. Schönle, and S. W. Hell, “Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters,” Biophys. J. 93(9), 3285–3290 (2007). [CrossRef] [PubMed]
  6. M. Bates, B. Huang, G. T. Dempsey, and X. Zhuang, “Multicolor super-resolution imaging with photo-switchable fluorescent probes,” Science 317(5845), 1749–1753 (2007). [CrossRef] [PubMed]
  7. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006). [CrossRef] [PubMed]
  8. S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006). [CrossRef] [PubMed]
  9. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006). [CrossRef] [PubMed]
  10. M. Heilemann, S. van de Linde, A. Mukherjee, and M. Sauer, “Super-resolution imaging with small organic fluorophores,” Angew. Chem. Int. Ed. Engl. 48(37), 6903–6908 (2009). [CrossRef] [PubMed]
  11. S. Manley, J. M. Gillette, G. H. Patterson, H. Shroff, H. F. Hess, E. Betzig, and J. Lippincott-Schwartz, “High-density mapping of single-molecule trajectories with photoactivated localization microscopy,” Nat. Methods 5(2), 155–157 (2008). [CrossRef] [PubMed]
  12. H. Shroff, C. G. Galbraith, J. A. Galbraith, and E. Betzig, “Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics,” Nat. Methods 5(5), 417–423 (2008). [CrossRef] [PubMed]
  13. M. H. Kraus, W. Issing, T. Miki, N. C. Popescu, and S. A. Aaronson, “Isolation and characterization of ERBB3, a third member of the ERBB/epidermal growth factor receptor family: evidence for overexpression in a subset of human mammary tumors,” Proc. Natl. Acad. Sci. U.S.A. 86(23), 9193–9197 (1989). [CrossRef] [PubMed]
  14. P. Nagy, D. J. Arndt-Jovin, and T. M. Jovin, “Small interfering RNAs suppress the expression of endogenous and GFP-fused epidermal growth factor receptor (erbB1) and induce apoptosis in erbB1-overexpressing cells,” Exp. Cell Res. 285(1), 39–49 (2003). [CrossRef] [PubMed]
  15. S. Wolter, M. Schüttpelz, M. Tscherepanow, S. Van de Linde, M. Heilemann, and M. Sauer, “Real-time computation of subdiffraction-resolution fluorescence images,” J. Microsc. 237(1), 12–22 (2010). [CrossRef] [PubMed]
  16. A. Matsuda, L. Shao, J. Boulanger, C. Kervrann, P. M. Carlton, P. Kner, D. Agard, and J. W. Sedat, “Condensed mitotic chromosome structure at nanometer resolution using PALM and EGFP- histones,” PLoS ONE 5(9), e12768 (2010). [CrossRef] [PubMed]
  17. M. Gunkel, F. Erdel, K. Rippe, P. Lemmer, R. Kaufmann, C. Hörmann, R. Amberger, and C. Cremer, “Dual color localization microscopy of cellular nanostructures,” Biotechnol. J. 4(6), 927–938 (2009). [CrossRef] [PubMed]
  18. R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82(5), 2775–2783 (2002). [CrossRef] [PubMed]
  19. D. Baddeley, M. B. Cannell, and C. Soeller, “Visualization of localization microscopy data,” Microsc. Microanal. 16(01), 64–72 (2010). [CrossRef] [PubMed]
  20. R. R. Korfhage, Information Storage and Retrieval (Wiley, New York, 1997), p. 368.
  21. P. Soille, Morphological Image Analysis (Springer-Verlag, Berlin, 2004), p. 391.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited