OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 4 — Feb. 14, 2011
  • pp: 3251–3257

Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices

Zhanghua Han and Sergey I. Bozhevolnyi  »View Author Affiliations


Optics Express, Vol. 19, Issue 4, pp. 3251-3257 (2011)
http://dx.doi.org/10.1364/OE.19.003251


View Full Text Article

Enhanced HTML    Acrobat PDF (1004 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate the realization of on-chip plasmonic analogue of electromagnetically induced transparency (EIT) in integrated plasmonic devices using detuned Fabry-Perot resonators aperture-side-coupled to a metal-insulator-metal (MIM) waveguide, with the transmission peak occurring at the intermediate wavelength. Strong MIM mode confinement along with localized side-coupling allows one to realize subwavelength photonic components with EIT-like transmission. Numerical results show that MIM components exhibiting pronounced EIT-like spectra in near infrared with the footprint of < 0.15 μm2 and group index of ~26 can be designed.

© 2011 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(160.3918) Materials : Metamaterials

ToC Category:
Optics at Surfaces

History
Original Manuscript: January 10, 2011
Revised Manuscript: January 26, 2011
Manuscript Accepted: January 30, 2011
Published: February 3, 2011

Citation
Zhanghua Han and Sergey I. Bozhevolnyi, "Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices," Opt. Express 19, 3251-3257 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-4-3251


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K.-J. Boller, A. Imamolu, and S. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991). [CrossRef] [PubMed]
  2. D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled resonator induced transparency,” Phys. Rev. A 69(6), 063804 (2004). [CrossRef]
  3. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006). [CrossRef] [PubMed]
  4. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008). [CrossRef] [PubMed]
  5. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010). [CrossRef]
  6. R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon induced transparency,” Phys. Rev. Lett. 104(24), 243902 (2010). [CrossRef] [PubMed]
  7. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005). [CrossRef]
  8. S. I. Bozhevolnyi, A. B. Evlyukhin, A. Pors, M. G. Nielsen, M. Willatzen, and O. Albrektsen, “Optical transparency by detuned electrical dipoles,” N. J. Phys. in press.
  9. S. I. Bozhevolnyi, “Effective-index modeling of channel plasmon polaritons,” Opt. Express 14(20), 9467–9476 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-20-9467 . [CrossRef] [PubMed]
  10. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006). [CrossRef] [PubMed]
  11. Z. Han, A. Y. Elezzabi, and V. Van, “Experimental realization of subwavelength plasmonic slot waveguides on a silicon platform,” Opt. Lett. 35(4), 502–504 (2010). [CrossRef] [PubMed]
  12. S. I. Bozhevolnyi and J. Jung, “Scaling for gap plasmon based waveguides,” Opt. Express 16(4), 2676–2679 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-4-2676 . [CrossRef] [PubMed]
  13. Z. Han, “Ultracompact plasmonic racetrack resonators in metal-insulator-metal waveguides,” Photonics and Nanostructures-Fundamentals and Applications 8(3), 172–176 (2010). [CrossRef]
  14. Z. Han, V. Van, W. N. Herman, and P.-T. Ho, “Aperture-coupled MIM plasmonic ring resonators with sub-diffraction modal volumes,” Opt. Express 17(15), 12678–12684 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-15-12678 . [CrossRef] [PubMed]
  15. P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  16. A. B. Evlyukhin, S. I. Bozhevolnyi, A. Pors, M. G. Nielsen, I. P. Radko, M. Willatzen, and O. Albrektsen, “Detuned electrical dipoles for plasmonic sensing,” Nano Lett. 10(11), 4571–4577 (2010). [CrossRef] [PubMed]
  17. J. B. Khurgin and P. A. Morton, “Tunable wideband optical delay line based on balanced coupled resonator structures,” Opt. Lett. 34(17), 2655–2657 (2009). [CrossRef] [PubMed]
  18. Y. Zhang, S. Darmawan, L. Y. M. Tobing, T. Mei, and D. H. Zhang, “Coupled resonator-induced transparency in ring-bus-ring Mach-Zehnder interferometer,” J. Opt. Soc. Am. B 28(1), 28–36 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited