OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 4 — Feb. 14, 2011
  • pp: 3290–3296

Carrier and thermal dynamics of silicon photonic resonators at cryogenic temperatures

Wolfram H. P. Pernice, Carsten Schuck, Mo Li, and Hong X. Tang  »View Author Affiliations


Optics Express, Vol. 19, Issue 4, pp. 3290-3296 (2011)
http://dx.doi.org/10.1364/OE.19.003290


View Full Text Article

Enhanced HTML    Acrobat PDF (1011 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe measurement results of silicon photonic circuits at cryogenic temperatures. The interplay between optically induced heating and free carrier dynamics in nano-photonic ring resonators is investigated at temperatures down to 1.8K. We find that the life-time of free carriers generated by two-photon absorption in silicon waveguides is reduced from 1.9ns at room temperature to less than 100ps below 10K. At the same time the thermal relaxation time is significantly elongated. Our work provides the first cryogenic measurement of ultra-short free-carrier lifetimes in silicon waveguides. The results further indicate that integrated optical chips can be easily thermo-optically stabilized at low temperatures.

© 2011 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Integrated Optics

History
Original Manuscript: November 1, 2010
Revised Manuscript: January 17, 2011
Manuscript Accepted: January 20, 2011
Published: February 4, 2011

Citation
Wolfram H. P. Pernice, Carsten Schuck, Mo Li, and Hong X. Tang, "Carrier and thermal dynamics of silicon photonic resonators at cryogenic temperatures," Opt. Express 19, 3290-3296 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-4-3290


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. A. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006). [CrossRef]
  2. R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A, Pure Appl. Opt. 8(10), 840–848 (2006). [CrossRef]
  3. V. R. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett. 29(20), 2387–2389 (2004). [CrossRef] [PubMed]
  4. T. Baehr-Jones and M. Hochberg, “Silicon photonics: slot machine,” Nat. Photonics 3(4), 193–194 (2009). [CrossRef]
  5. P. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express 13(3), 801–820 (2005). [CrossRef] [PubMed]
  6. D. Dimitropoulos, R. Jhaveri, R. Claps, J. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on insulator rib waveguides,” Appl. Phys. Lett. 86(7), 071115 (2005). [CrossRef]
  7. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express 15(25), 16604–16644 (2007). [CrossRef] [PubMed]
  8. R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, “Influence of nonlinear absorption on Raman amplification in Silicon waveguides,” Opt. Express 12(12), 2774–2780 (2004). [CrossRef] [PubMed]
  9. M. Li, W. H. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008). [CrossRef] [PubMed]
  10. H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005). [CrossRef] [PubMed]
  11. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005). [CrossRef] [PubMed]
  12. Y.-H. Kuo, H. Rong, V. Sih, S. Xu, M. Paniccia, and O. Cohen, “Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides,” Opt. Express 14(24), 11721–11726 (2006). [CrossRef] [PubMed]
  13. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006). [CrossRef] [PubMed]
  14. A. C. Turner-Foster, M. A. Foster, J. S. Levy, C. B. Poitras, R. Salem, A. L. Gaeta, and M. Lipson, “Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides,” Opt. Express 18(4), 3582–3591 (2010). [CrossRef] [PubMed]
  15. M. Waldow, T. Plötzing, M. Gottheil, M. Först, J. Bolten, T. Wahlbrink, and H. Kurz, “25ps all-optical switching in oxygen implanted silicon-on-insulator microring resonator,” Opt. Express 16(11), 7693–7702 (2008). [CrossRef] [PubMed]
  16. T. J. Johnson and O. J. Painter, “Passive modification of free carrier lifetime in high-Q silicon-on-insulator optics,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CFF4.
  17. W. H. P. Pernice, M. Li, and H. X. Tang, “Time-domain measurement of optical transport in silicon micro-ring resonators,” Opt. Express 18(17), 18438–18452 (2010). [CrossRef] [PubMed]
  18. M. Fox, Optical Properties of Solids, 2nd ed. (Oxford University Press, 2010).
  19. J. Batista, A. Mandelis, and D. Shaughnessy, “Temperature dependence of carrier mobility in Si wafers measured by infrared photocarrier radiometry,” Appl. Phys. Lett. 82(23), 4077–4079 (2003). [CrossRef]
  20. A. Salnick, C. Jean, and A. Mandelis, “Noncontacting photothermal radiometry of SiO2/Si MOS capacitor structures,” Solid-State Electron. 41(4), 591–597 (1997). [CrossRef]
  21. W. H. P. Pernice, “Mo Li, and H.X. Tang, “Photothermal actuation in nanomechanical waveguide devices,” J. Appl. Phys. 105, 014508 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited