OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 4 — Feb. 14, 2011
  • pp: 3353–3362

Efficient gonio-imaging of optically variable devices by compound-eye image-capturing system

Yoshinori Akao, Rui Shogenji, Norimichi Tsumura, Masahiro Yamaguchi, and Jun Tanida  »View Author Affiliations

Optics Express, Vol. 19, Issue 4, pp. 3353-3362 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1133 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we propose a method for efficient gonio-imaging of optically variable devices (OVDs), which are applied as a counterfeit deterrence for valuable documents. A compound-eye image-capturing system composed by a microlens array, a signal separator, and an image sensor was used to capture directionally distributed light from OVDs after being collimated by a convex lens. Multiple images corresponding to different observation angles were obtained in the individual eyes of the system, simultaneously and independently. A demonstration involving a holographic grating provided 100 gonio images that exhibited sensitive color changes of the diffracted light according to the observation angle.

© 2011 OSA

OCIS Codes
(110.2970) Imaging systems : Image detection systems
(110.4190) Imaging systems : Multiple imaging
(120.4630) Instrumentation, measurement, and metrology : Optical inspection
(130.0250) Integrated optics : Optoelectronics
(150.3040) Machine vision : Industrial inspection
(230.3120) Optical devices : Integrated optics devices

ToC Category:
Imaging Systems

Original Manuscript: December 3, 2010
Revised Manuscript: January 28, 2011
Manuscript Accepted: January 31, 2011
Published: February 4, 2011

Virtual Issues
Vol. 6, Iss. 3 Virtual Journal for Biomedical Optics

Yoshinori Akao, Rui Shogenji, Norimichi Tsumura, Masahiro Yamaguchi, and Jun Tanida, "Efficient gonio-imaging of optically variable devices by compound-eye image-capturing system," Opt. Express 19, 3353-3362 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. L. van Renesse, Optical Document Security, Third edition (Artech House, 2005).
  2. M. Koudelka, S. Magda, P. Belhumeur, and D. Kriegman, “Acquisition, compression, and synthesis of bidirectional texture functions,” in Texture 2003: Proceedings of 3rd International Workshop on Texture Analysis and Synthesis, (2003), pp. 59–64.
  3. M. Sattler, R. Sarlette, and R. Klein, “Efficient and realistic visualization of cloth,” in Eurographics Symposium on Rendering 2003, P. Christensen and D. Cohen-Or ed., (Eurographics/ACM, 2003), pp. 167–177.
  4. K. J. Dana and J. Wang, “Device for convenient measurement of spatially varying bidirectional reflectance,” J. Opt. Soc. Am. A 21(1), 1–12 (2004). [CrossRef]
  5. F. E. Nicodemus, “Reflectance nomenclature and directional reflectance and emissivity,” Appl. Opt. 9(6), 1474–1475 (1970). [CrossRef] [PubMed]
  6. J. Y. Han and K. Perlin, “Measuring bidirectional texture reflectance with a kaleidoscope,” ACM Trans. Graph. 22(3), 741–748 (2003). [CrossRef]
  7. K. J. Dana, B. van Ginneken, S. K. Nayar, and J. J. Koenderink, “Reflectance and texture of real world surfaces,” ACM Trans. Graph. 18(1), 1–34 (1999). [CrossRef]
  8. G. Müller, G. Bendels, and R. Klein, “Rapid synchronous acquisition of geometry and BTF for cultural heritage artefacts,” in the 6th International Symposium on Virtual Reality, Archaeology and Cultural Heritage (VAST), (Eurographics Association, 2005), pp. 13–20.
  9. T. Malzbender, D. Gelb, and H. Wolters, “Polynomial texture maps,” in ACM SIGGRAPH 2001: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, (ACM Press, 2001), pp. 519–528.
  10. G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. 7, 821–882 (1908).
  11. H. E. Ives, “Parallax panoramagrams made with a large diameter lens,” J. Opt. Soc. Am. 20(6), 332–342 (1930). [CrossRef]
  12. R. Ng, M. Levoy, M. Brdif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-heldplenoptic camera,” Stanford Tech. Rep. CTSR 2005–02 (Stanford University, 2005).
  13. J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka, “Thin observation module by bound optics (TOMBO): concept and experimental verification,” Appl. Opt. 40(11), 1806–1813 (2001). [CrossRef]
  14. J. Tanida, R. Shogenji, Y. Kitamura, K. Yamada, M. Miyamoto, and S. Miyatake, “Color imaging with an integrated compound imaging system,” Opt. Express 11(18), 2109–2117 (2003). [CrossRef] [PubMed]
  15. R. Shogenji, Y. Kitamura, K. Yamada, S. Miyatake, and J. Tanida, “Multispectral imaging using compact compound optics,” Opt. Express 12(8), 1643–1655 (2004). [CrossRef] [PubMed]
  16. Y. Kitamura, R. Shogenji, K. Yamada, S. Miyatake, M. Miyamoto, T. Morimoto, Y. Masaki, N. Kondou, D. Miyazaki, J. Tanida, and Y. Ichioka, “Reconstruction of a high-resolution image on a compound-eye image-capturing system,” Appl. Opt. 43(8), 1719–1727 (2004). [CrossRef] [PubMed]
  17. R. Horisaki, K. Choi, J. Hahn, J. Tanida, and D. J. Brady, “Generalized sampling using a compound-eye imaging system for multi-dimensional object acquisition,” Opt. Express 18(18), 19367–19378 (2010). [CrossRef] [PubMed]
  18. Y. Akao, A. Yamamoto, and Y. Higashikawa, “Study on the groove number of 2D hologram applied to security documents,” in Abstract of 14th Annual Meeting of Japanese Association of Forensic Science and Technology, M. Yoshino, ed. (Komiyama Printing Co., Ltd., Tokyo, Japan, 2008), p.191 [in Japanese].

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited