OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 4 — Feb. 14, 2011
  • pp: 3418–3433

Spectral behavior of partially pumped weakly scattering random lasers

Jonathan Andreasen and Hui Cao  »View Author Affiliations

Optics Express, Vol. 19, Issue 4, pp. 3418-3433 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2102 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Stochastic noise is incorporated in the numerical simulation of weakly scattering random lasers, which qualitatively captures lasing phenomena that have been observed experimentally. We examine the behavior of the emission spectrum while pumping only part of the entire one-dimensional random system. A decrease in the density of lasing states is the dominant mechanism for observing discrete lasing peaks when absorption exists in the unpumped region. Without such absorption, the density of lasing states does not reduce as dramatically but the statistical distribution of (linear) lasing thresholds is broadened. This may facilitate incremental observation of lasing in smaller-threshold modes in the emission spectrum with fine adjustments of the pumping rate.

© 2011 Optical Society of America

OCIS Codes
(030.4070) Coherence and statistical optics : Modes
(140.3460) Lasers and laser optics : Lasers
(260.2710) Physical optics : Inhomogeneous optical media

ToC Category:
Lasers and Laser Optics

Original Manuscript: December 20, 2010
Revised Manuscript: February 3, 2011
Manuscript Accepted: February 3, 2011
Published: February 7, 2011

Jonathan Andreasen and Hui Cao, "Spectral behavior of partially pumped weakly scattering random lasers," Opt. Express 19, 3418-3433 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. S. Letokhov, “Generation of light by a scattering medium with negative resonance absorption,” Sov. Phys. JETP 26, 835–840 (1968).
  2. V. M. Markushev, V. F. Zolin, and C. M. Briskina, “Powder laser,” Zh. Prikl. Spektrosk. 45, 847–849 (1986).
  3. C. Gouedard, D. Husson, and C. Sauteret, “Generation of spatially incoherent short pulses in laser-pumped neodymium stoichiometric crystals and powders,” J. Opt. Soc. Am. B 10, 2358–2363 (1993). [CrossRef]
  4. N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994). [CrossRef]
  5. W. L. Sha, C.-H. Liu, and R. R. Alfano, “Spectral and temporal measurements of laser action of rhodamine 640 dye in strongly scattering media,” Opt. Lett. 19, 1922–1924 (1994). [CrossRef] [PubMed]
  6. M. A. Noginov, H. J. Caulfield, N. E. Noginova, and P. Venkateswarlu, “Line narrowing in the dye solution with scattering centers,” Opt. Commun. 118, 430–437 (1995). [CrossRef]
  7. D. S. Wiersma, M. P. van Albada, and A. Lagendijk, “Random laser?” Nature 373, 203–204 (1995). [CrossRef]
  8. H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett. 73, 3656–3658 (1998). [CrossRef]
  9. H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999). [CrossRef]
  10. S. V. Frolov, Z. V. Vardeny, K. Yoshino, A. Zakhidov, and R. H. Baughman, “Stimulated emission in high-gain organic media,” Phys. Rev. B 59, R5284–R5287 (1999). [CrossRef]
  11. Y. Ling, H. Cao, A. L. Burin, M. A. Ratner, X. Liu, and R. P. H. Chang, “Investigation of random lasers with resonant feedback,” Phys. Rev. A 64, 063808 (2001). [CrossRef]
  12. X. Wu, W. Fang, A. Yamilov, A. A. Chabanov, A. A. Asatryan, L. C. Botten, and H. Cao, “Random lasing in weakly scattering systems,” Phys. Rev. A 74, 053812 (2006). [CrossRef]
  13. C. Vanneste, and P. Sebbah, “Selective excitation of localized modes in active random media,” Phys. Rev. Lett. 87, 183903 (2001). [CrossRef]
  14. X. Jiang, and C. M. Soukoulis, “Localized random lasing modes and a path for observing localization,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65, 025601 (2002). [CrossRef]
  15. C. Vanneste, P. Sebbah, and H. Cao, “Lasing with resonant feedback in weakly scattering random systems,” Phys. Rev. Lett. 98, 143902 (2007). [CrossRef] [PubMed]
  16. M. Patra, “Decay rate distributions of disordered slabs and application to random lasers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67, 016603 (2003). [CrossRef]
  17. V. M. Apalkov, and M. E. Raikh, “Universal fluctuations of the random lasing threshold in a sample of a finite area,” Phys. Rev. B 71, 054203 (2005). [CrossRef]
  18. A. Yamilov, X. Wu, H. Cao, and A. L. Burin, “Absorption-induced confinement of lasing modes in diffusive random media,” Opt. Lett. 30, 2430–2432 (2005). [CrossRef] [PubMed]
  19. X. Wu, J. Andreasen, H. Cao, and A. Yamilov, “Effect of local pumping on random laser modes in one dimension,” J. Opt. Soc. Am. B 24, A26–A33 (2007). [CrossRef]
  20. J. Andreasen, C. Vanneste, L. Ge, and H. Cao, “Effects of spatially nonuniform gain on lasing modes in weakly scattering random systems,” Phys. Rev. A 81, 043818 (2010). [CrossRef]
  21. P. Sebbah, and C. Vanneste, “Random laser in the localized regime,” Phys. Rev. B 66, 144202 (2002). [CrossRef]
  22. M. Terraneo, and I. Guarneri, “Distribution of resonance widths in localized tight-binding models,” Eur. Phys. J. B 18, 303–309 (2000). [CrossRef]
  23. F. A. Pinheiro, M. Rusek, A. Orlowski, and B. A. van Tiggelen, “Probing anderson localization of light via decay rate statistics,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69, 026605 (2004). [CrossRef]
  24. A. D. Mirlin, “Statistics of energy levels and eigenfunctions in disordered systems,” Phys. Rep. 326, 259–382 (2000). [CrossRef]
  25. A. A. Chabanov, Z. Q. Zhang, and A. Z. Genack, “Breakdown of diffusion in dynamics of extended waves in mesoscopic media,” Phys. Rev. Lett. 90, 203903 (2003). [CrossRef] [PubMed]
  26. L. I. Deych, “Effects of spatial nonuniformity on laser dynamics,” Phys. Rev. Lett. 95, 043902 (2005). [CrossRef] [PubMed]
  27. J. Andreasen, A. Asatryan, L. Botten, M. Byrne, H. Cao, L. Ge, L. Labont’e, P. Sebbah, A. D. Stone, H. E. T¨ureci, and C. Vanneste, “Modes of random lasers,” Adv. Opt. Photon. 3, 88–127 (2011). [CrossRef]
  28. G. van Soest, M. Tomita, and A. Lagendijk, “Amplifying volume in scattering media,” Opt. Lett. 24, 306–308 (1999). [CrossRef]
  29. M. Bahoura, K. J. Morris, G. Zhu, and M. A. Noginov, “Dependence of the neodymium random laser threshold on the diameter of the pumped spot,” IEEE J. Quantum Electron. 41, 677–685 (2005). [CrossRef]
  30. E. V. Chelnokov, N. Bityurin, I. Ozerov, and W. Marine, “Two-photon pumped random laser in nanocrystalline ZnO,” Appl. Phys. Lett. 89, 171119 (2006). [CrossRef]
  31. H. Cao, X. Jiang, Y. Ling, J. Y. Xu, and C. M. Soukoulis, “Mode repulsion and mode coupling in random lasers,” Phys. Rev. B 67, 161101 (2003). [CrossRef]
  32. H. E. T¨ureci, L. Ge, S. Rotter, and A. D. Stone, “Strong interactions in multimode random lasers,” Science 320, 643–646 (2008). [CrossRef] [PubMed]
  33. X. Jiang, and C. M. Soukoulis, “Time dependent theory for random lasers,” Phys. Rev. Lett. 85, 70–73 (2000). [CrossRef] [PubMed]
  34. J. Andreasen, and H. Cao, “Finite-different time-domain formulation of stochastic noise in macroscopic atomic systems,” J. Lightwave Technol. 27, 4530–4535 (2009). [CrossRef]
  35. X. Wu, and H. Cao, “Statistical studies of random-lasing modes and amplified-spontaneous-emission spikes in weakly scattering systems,” Phys. Rev. A 77, 013832 (2008). [CrossRef]
  36. X. Wu, A. Yamilov, H. Noh, H. Cao, E. W. Seelig, and R. P. H. Chang, “Random lasing in closely packed resonant scatterers,” J. Opt. Soc. Am. B 21, 159–167 (2004). [CrossRef]
  37. A. Taflove, and S. Hagness, Computational Electrodynamics, 3rd ed. (Artech House, 2005).
  38. J. Andreasen, H. Cao, A. Taflove, P. Kumar, and C. Cao, “Finite-difference time-domain simulation of thermal noise in open cavities,” Phys. Rev. A 77, 023810 (2008). [CrossRef]
  39. D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method (IEEE Press, 2000). [CrossRef]
  40. R. W. Ziolkowski, J. M. Arnold, and D. M. Gogny, “Ultrafast pulse interactions with two-level atoms,” Phys. Rev. A 52, 3082–3094 (1995). [CrossRef] [PubMed]
  41. P. D. Drummond, and M. G. Raymer, “Quantum theory of propagation of nonclassical radiation in a near-resonant medium,” Phys. Rev. A 44, 2072–2085 (1991). [CrossRef] [PubMed]
  42. A. E. Siegman, Lasers (University Science Books, 1986).
  43. G. J. de Valc’arcel, E. Rold’an, and F. Prati, “Semiclassical theory of amplification and lasing,” Rev. Mex. Fis. 52, 198–214 (2006).
  44. J. Andreasen, and H. Cao, “Numerical study of amplified spontaneous emission and lasing in random media,” Phys. Rev. A 82, 063835 (2010). [CrossRef]
  45. P. J. Bardroff, and S. Stenholm, “Quantum theory of excess noise,” Phys. Rev. A 60, 2529–2533 (1999). [CrossRef]
  46. J. Andreasen, and H. Cao, “Creation of new lasing modes with spatially nonuniform gain,” Opt. Lett. 34, 3586–3588 (2009). [CrossRef] [PubMed]
  47. D. W. Scott, “On optimal and data-based histograms,” Biometrika 66, 605–610 (1979). [CrossRef]
  48. O. Frazão, C. Correia, J. L. Santos, and J. M. Baptista, “Raman fibre Bragg-grating laser sensor with cooperative Rayleigh scattering for strain-temperature measurement,” Meas. Sci. Technol. 20, 045203 (2009). [CrossRef]
  49. S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, and S. I. Kablukov, “J. D. Ania-Casta˜n’on, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4, 231–235 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited