OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 4 — Feb. 14, 2011
  • pp: 3434–3439

High-resolution computer-generated reflection holograms with three-dimensional effects written directly on a silicon surface by a femtosecond laser

Kristian J. Wædegaard and Peter Balling  »View Author Affiliations


Optics Express, Vol. 19, Issue 4, pp. 3434-3439 (2011)
http://dx.doi.org/10.1364/OE.19.003434


View Full Text Article

Enhanced HTML    Acrobat PDF (991 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An infrared femtosecond laser has been used to write computer-generated holograms directly on a silicon surface. The high resolution offered by short-pulse laser ablation is employed to write highly detailed holograms with resolution up to 111 kpixels/mm2. It is demonstrated how three-dimensional effects can be realized in computer-generated holograms. Three-dimensional effects are visualized as a relative motion between different parts of the holographic reconstruction, when the hologram is moved relative to the reconstructing laser beam. Potential security applications are briefly discussed.

© 2011 OSA

OCIS Codes
(090.1760) Holography : Computer holography
(140.3390) Lasers and laser optics : Laser materials processing
(140.7090) Lasers and laser optics : Ultrafast lasers
(220.4000) Optical design and fabrication : Microstructure fabrication

ToC Category:
Holography

History
Original Manuscript: December 22, 2010
Revised Manuscript: January 27, 2011
Manuscript Accepted: January 28, 2011
Published: February 7, 2011

Citation
Kristian J. Wædegaard and Peter Balling, "High-resolution computer-generated reflection holograms with three-dimensional effects written directly on a silicon surface by a femtosecond laser," Opt. Express 19, 3434-3439 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-4-3434


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. W. Lohmann and D. P. Paris, “Binary fraunhofer holograms, generated by computer,” Appl. Opt. 6(10), 1739–1748 (1967). [CrossRef] [PubMed]
  2. L. Ran and S. Qu, “Self-assembled volume vortex grating induced by femtosecond laser pulses in glass,” Curr. Appl. Phys. 9(6), 1210–1212 (2009). [CrossRef]
  3. Z. Guo, S. Qu, and S. Liu, “Generating optical vortex with computer-generated hologram fabricated inside glass by femtosecond laser pulses,” Opt. Commun. 273(1), 286–289 (2007). [CrossRef]
  4. Y. Li, Y. Dou, R. An, H. Yang, and Q. Gong, “Permanent computer-generated holograms embedded in silica glass by femtosecond laser pulses,” Opt. Express 13(7), 2433–2438 (2005). [CrossRef] [PubMed]
  5. Q.Z. Zhao, J. R. Qiu, X. W. Jiang, E. W. Dai, C. H. Zhou, and C. S. Zhu, “Direct writing computer-generated holograms on metal film by an infrared femtosecond laser,” Opt. Express 13(6), 2089–2092 (2005). [CrossRef] [PubMed]
  6. C. G. Trevino-Palacios, A. Olivares-Perez, and O. J. Zapata-Nava, “Security system with optical key access,” Proc. SPIE 6422, 642218–642224 (2007). [CrossRef]
  7. B. R. Brown and A. W. Lohmann, “Computer-generated Binary Holograms,” IBM J. Res. Develop. 13(2), 160–168 (1969). [CrossRef]
  8. J. P. Waters, “Three-Dimensional Fourier-Transform Method for Synthesizing Binary Holograms,” J. Opt. Soc. Am. 58(9), 1284–1288 (1968). [CrossRef]
  9. L. B. Lesem, P. M. Hirsch, and J. A. Jordan., “The Kinoform: A New Wavefront Reconstruction Device,” IBM J. Res. Develop. 13(2), 150–155 (1969). [CrossRef]
  10. T. Yamaguchi, G. Okabe, and H. Yoshikawa, “Real-time image plane full-color and full-parallax holographic video display system,” Opt. Eng. 46(12), 125801 (2007). [CrossRef]
  11. P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010). [CrossRef] [PubMed]
  12. P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114(1-2), 106–110 (1995). [CrossRef]
  13. K. Vestentoft, J. A. Olesen, B. H. Christensen, and P. Balling, “Nanostructuring of surfaces by ultra-short laser pulses,” Appl. Phys., A Mater. Sci. Process. 80(3), 493–496 (2005). [CrossRef]
  14. D. F. Edwards, “Silicon (Si),” in Handbook of Optical Constants of Solids, E.D. Palik, ed. (Academic, Orlando, Fla., 1985).
  15. J. P. Waters, “Holographic image synthesis utilizing theoretical methods,” Appl. Phys. Lett. 9(11), 405–407 (1966). [CrossRef]
  16. M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2(1), 28–34 (1993). [CrossRef]
  17. H. Yoshikawa, “Fast Computation of Fresnel Holograms Employing Difference,” Opt. Rev. 8(5), 331–335 (2001). [CrossRef]
  18. J. M. Liu, “Simple technique for measurements of pulsed Gaussian-beam spot sizes,” Opt. Lett. 7(5), 196–198 (1982). [CrossRef] [PubMed]
  19. J. Byskov-Nielsen, J.-M. Savolainen, M. S. Christensen, and P. Balling, “Ultra-short pulse laser ablation of metals: threshold fluence, incubation coefficient and ablation rates,” Appl. Phys., A Mater. Sci. Process. 101(1), 97–101 (2010). [CrossRef]
  20. J. Bonse, K.-W. Brzezinka, and A. J. Meixner, “Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy,” Appl. Surf. Sci. 221(1-4), 215–230 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

Multimedia

Multimedia FilesRecommended Software
» Media 1: AVI (1794 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited