OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 4 — Feb. 14, 2011
  • pp: 3440–3448

Contact focusing multimodal microprobes for ultraprecise laser tissue surgery

Arash Darafsheh, Amir Fardad, Nathaniel M. Fried, Andrew N. Antoszyk, Howard S. Ying, and Vasily N. Astratov  »View Author Affiliations

Optics Express, Vol. 19, Issue 4, pp. 3440-3448 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1062 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Focusing of multimodal beams by chains of dielectric microspheres assembled directly inside the cores of hollow waveguides is studied by using numerical ray tracing. The device designs are optimized for laser surgery in contact mode with strongly absorbing tissue. By analyzing a broad range of parameters it is demonstrated that chains formed by three or five spheres with a refractive index of 1.65-1.75 provide a two-fold improvement in spatial resolution over single spheres at the cost of 0.2-0.4 attenuation in peak intensity of the central focused beam. Potential applications include ultra precise laser ablation or coagulation in the eye and brain, cellular surgery, and the coupling of light into photonic nanostructures.

© 2011 OSA

OCIS Codes
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.4460) Medical optics and biotechnology : Ophthalmic optics and devices
(220.2740) Optical design and fabrication : Geometric optical design
(230.3990) Optical devices : Micro-optical devices

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: January 4, 2011
Revised Manuscript: January 31, 2011
Manuscript Accepted: January 31, 2011
Published: February 7, 2011

Virtual Issues
Vol. 6, Iss. 3 Virtual Journal for Biomedical Optics

Arash Darafsheh, Amir Fardad, Nathaniel M. Fried, Andrew N. Antoszyk, Howard S. Ying, and Vasily N. Astratov, "Contact focusing multimodal microprobes for ultraprecise laser tissue surgery," Opt. Express 19, 3440-3448 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Rol, and P. Niederer, “High-power laser transmission through optical fibers: Applications to ophthalmology,” in Laser Applications in Medicine and Biology, M. Wolbarsht, Ed., 141–198, Plenum, New York (1991).
  2. E. Mcleod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3(7), 413–417 (2008). [CrossRef] [PubMed]
  3. T.-H. Wu, T. Teslaa, M. A. Teitell, and P.-Yu. Chiou, “Photothermal nanoblade for patterned cell membrane cutting,” Opt. Express 18(22), 23153–23160 (2010). [CrossRef] [PubMed]
  4. U. Utzinger and R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8(1), 121–147 (2003). [CrossRef] [PubMed]
  5. D. X. Hammer, G. D. Noojin, R. J. Thomas, C. E. Clary, B. A. Rockwell, C. A. Toth, and W. P. Roach, “Intraocular laser surgical probe for membrane disruption by laser-induced breakdown,” Appl. Opt. 36(7), 1684–1693 (1997). [CrossRef] [PubMed]
  6. R. M. Verdaasdonk and C. Borst, “Ray tracing of optically modified fiber tips. 1: spherical probes,” Appl. Opt. 30(16), 2159–2171 (1991). [CrossRef] [PubMed]
  7. K. Iwai, Y.-W. Shi, M. Endo, K. Ito, Y. Matsuura, M. Miyagi, and H. Jelinkova, “Penetration of high-intensity Er:YAG laser light emitted by IR hollow optical fibers with sealing caps in water,” Appl. Opt. 43(12), 2568–2571 (2004). [CrossRef] [PubMed]
  8. T. Watanabe and Y. Matsuura, “Side-firing sealing caps for hollow optical fibers,” Lasers Surg. Med. 38(8), 792–797 (2006). [CrossRef] [PubMed]
  9. D. Palanker, I. Hemo, I. Turovets, H. Zauberman, G. Fish, and A. Lewis, “Vitreoretinal ablation with the 193-nm excimer laser in fluid media,” Invest. Ophthalmol. Vis. Sci. 35(11), 3835–3840 (1994). [PubMed]
  10. J. T. Walsh, T. J. Flotte, and T. F. Deutsch, “Er:YAG laser ablation of tissue: effect of pulse duration and tissue type on thermal damage,” Lasers Surg. Med. 9(4), 314–326 (1989). [CrossRef] [PubMed]
  11. D. J. D’Amico, P. D. Brazitikos, G. R. Marcellino, S. M. Finn, and J. L. Hobart, “Initial clinical experience with an erbium:YAG laser for vitreoretinal surgery,” Am. J. Ophthalmol. 121(4), 414–425 (1996). [PubMed]
  12. D. J. D’Amico, M. S. Blumenkranz, M. J. Lavin, H. Quiroz-Mercado, I. G. Pallikaris, G. R. Marcellino, and G. E. Brooks, “Multicenter clinical experience using an erbium:YAG laser for vitreoretinal surgery,” Ophthalmology 103(10), 1575–1585 (1996). [PubMed]
  13. A. Heifetz, S. C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic Nanojets,” J Comp. Theor. Nanosci. 6(9), 1979–1992 (2009). [CrossRef]
  14. Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12(7), 1214–1220 (2004). [CrossRef] [PubMed]
  15. S.-C. Kong, A. Sahakian, A. Taflove, and V. Backman, “Photonic nanojet-enabled optical data storage,” Opt. Express 16(18), 13713–13719 (2008). [CrossRef] [PubMed]
  16. P. Ferrand, J. Wenger, A. Devilez, M. Pianta, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Direct imaging of photonic nanojets,” Opt. Express 16(10), 6930–6940 (2008). [CrossRef] [PubMed]
  17. A. Devilez, N. Bonod, J. Wenger, D. Gérard, B. Stout, H. Rigneault, and E. Popov, “Three-dimensional subwavelength confinement of light with dielectric microspheres,” Opt. Express 17(4), 2089–2094 (2009). [CrossRef] [PubMed]
  18. V. N. Astratov, “Introduction: Physics and Applications of Microresonators,” Opt. Express 15(25), 17171–17457 (2007). [CrossRef] [PubMed]
  19. V. N. Astratov, “Fundamentals and Applications of Microsphere Resonator Circuits,” in Photonic Microresonator Research and Applications, I. Chremmos, O. Schwelb, and N. Uzunoglu, eds., (Springer Series in Optical Sciences 156, 2010), pp. 423–457.
  20. V. N. Astratov, J. P. Franchak, and S. P. Ashili, “Optical coupling and transport phenomena in chains of spherical dielectric microresonators with size disorder,” Appl. Phys. Lett. 85(23), 5508–5510 (2004). [CrossRef]
  21. Y. Hara, T. Mukaiyama, K. Takeda, and M. Kuwata-Gonokami, “Heavy photon states in photonic chains of resonantly coupled cavities with supermonodispersive microspheres,” Phys. Rev. Lett. 94(20), 203905 (2005). [CrossRef] [PubMed]
  22. B. M. Möller, U. Woggon, and M. V. Artemyev, “Coupled-resonator optical waveguides doped with nanocrystals,” Opt. Lett. 30(16), 2116–2118 (2005). [CrossRef] [PubMed]
  23. A. V. Kanaev, V. N. Astratov, and W. Cai, “Optical coupling at a distance between detuned spherical cavities,” Appl. Phys. Lett. 88(11), 111111 (2006). [CrossRef]
  24. L. I. Deych and O. Roslyak, “Photonic band mixing in linear chains of optically coupled microspheres,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(3), 036606 (2006). [CrossRef] [PubMed]
  25. Z. Chen, A. Taflove, and V. Backman, “Highly efficient optical coupling and transport phenomena in chains of dielectric microspheres,” Opt. Lett. 31(3), 389–391 (2006). [CrossRef] [PubMed]
  26. A. M. Kapitonov and V. N. Astratov, “Observation of nanojet-induced modes with small propagation losses in chains of coupled spherical cavities,” Opt. Lett. 32(4), 409–411 (2007). [CrossRef] [PubMed]
  27. S. Yang and V. N. Astratov, “Photonic nanojet-induced modes in chains of size-disordered microspheres with an attenuation of only 0.08 dB per sphere,” Appl. Phys. Lett. 92(26), 261111 (2008). [CrossRef]
  28. T. Mitsui, Y. Wakayama, T. Onodera, Y. Takaya, and H. Oikawa, “Observation of light propagation across a 90 ° corner in chains of microspheres on a patterned substrate,” Opt. Lett. 33(11), 1189–1191 (2008). [CrossRef] [PubMed]
  29. T. Mitsui, Y. Wakayama, T. Onodera, T. Hayashi, N. Ikeda, Y. Sugimoto, T. Takamasu, and H. Oikawa, “Micro-demultiplexer of Coupled Resonator Optical Waveguide Fabricated by Microspheres,” Adv. Mater. 22(28), 3022–3026 (2010). [CrossRef] [PubMed]
  30. O. Lecarme, T. Pinedo Rivera, L. Arbez, T. Honegger, K. Berton, and D. Peyrade, “Colloidal optical waveguides with integrated local light sources built by capillary force assembly,” J. Vac. Sci. Technol. B 28(6), C6011–C6015 (2010). [CrossRef]
  31. V. N. Astratov, “Focusing multimodal optical microprobe devices and methods,” International patent publication No. WO/2011/005397 (priority date 17 June 2009).
  32. V.N. Astratov, A. Darafsheh, M.D. Kerr, K.W. Allen, N.M. Fried, A.N. Antoszyk, and H.S. Ying, “Photonic nanojets for laser surgery,” SPIE Newsroom. 12 March 2010.
  33. A. Darafsheh, M. D. Kerr, K. W. Allen, N. M. Fried, A. N. Antoszyk, H. S. Ying, and V. N. Astratov, “Integrated microsphere arrays: light focusing and propagation effects,” in Optoelectronic Integrated Circuits XII edited by L.A. Eldada, E.-H. Lee, Proc. of SPIE, vol. 7605, 9pp., Feb. 2010, paper 76050R.
  34. V. N. Astratov, A. Darafsheh, M. D. Kerr, K. W. Allen, and N. M. Fried, “Focusing microprobes based on integrated chains of microspheres,” Proc. of Progress in Electromagnetics Research Symposium, Cambridge, U.S.A., July 5–8, 419–423 (2010).
  35. J. A. Harrington, “A Review of IR Transmitting, Hollow Waveguides,” Fiber Int. Opt. 19(3), 211–227 (2000). [CrossRef]
  36. S. Narita, Y. Matsuura, and M. Miyagi, “Tapered hollow waveguide for focusing infrared laser beams,” Opt. Lett. 32(8), 930–932 (2007). [CrossRef] [PubMed]
  37. I. D. Chremmos and N. K. Uzunoglu, “Analysis of scattering by a linear chain of spherical inclusions in an optical fiber,” J. Opt. Soc. Am. A 23(12), 3054–3062 (2006). [CrossRef]
  38. http://www.zemax.com ZEMAX is software for optical-system design. Accessed 7 February 2010.
  39. H. Aouani, F. Deiss, J. Wenger, P. Ferrand, N. Sojic, and H. Rigneault, “Optical-fiber-microsphere for remote fluorescence correlation spectroscopy,” Opt. Express 17(21), 19085–19092 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited