OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 4 — Feb. 14, 2011
  • pp: 3455–3463

Low order modes in microcavities based on silicon colloids

E. Xifré-Pérez, R. Fenollosa, and F. Meseguer  »View Author Affiliations

Optics Express, Vol. 19, Issue 4, pp. 3455-3463 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1126 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Silicon colloids based microcavities, with sphere size between 1 and 3 micrometers, have been synthesized and optically characterized. Due to both the small cavity volume and the high refractive index of silicon we are able to tune resonances with extremely low mode index, whose electric field distribution resembles those of electronic orbitals. The value of some parameters such as quality factor Q, effective mode volume, and evanescent field have been calculated for several modes. This calculation indicates silicon colloids can be a serious strategy for developing optical microcavities where may coexist both optical modes with large evanescent fields useful for sensing applications, as well as modes with high Q/V ratio values, of the order of 109(λ/n)−3.

© 2011 OSA

OCIS Codes
(040.6040) Detectors : Silicon
(140.3945) Lasers and laser optics : Microcavities

ToC Category:

Original Manuscript: October 28, 2010
Revised Manuscript: December 15, 2010
Manuscript Accepted: December 17, 2010
Published: February 8, 2011

E. Xifré-Pérez, R. Fenollosa, and F. Meseguer, "Low order modes in microcavities based on silicon colloids," Opt. Express 19, 3455-3463 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. A. Muller, “A sound barrier for silicon?” Nat. Mater. 4(9), 645–647 (2005). [CrossRef] [PubMed]
  2. B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005). [CrossRef]
  3. A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel;, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405(6785), 437–440 (2000). [CrossRef] [PubMed]
  4. B.-S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science 300(5625), 1537–1537 (2003). [CrossRef] [PubMed]
  5. A. Ashkin and M. Dziedzic, “Observation of Resonances in the Radiation Pressure of Dielectric Spheres,” Phys. Rev. Lett. 38(23), 1351–1354 (1977). [CrossRef]
  6. A. Ashkin and J. M. Dziedzic, “Observation of optical resonances of dielectric spheres by light scattering,” Appl. Opt. 20(10), 1803–1814 (1981). [CrossRef] [PubMed]
  7. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999). [CrossRef] [PubMed]
  8. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003). [CrossRef] [PubMed]
  9. K. Inoue, H. Sasaki, K. Ishida, Y. Sugimoto, N. Ikeda, Y. Tanaka, S. Ohkouchi, Y. Nakamura, and K. Asakawa, “InAs quantum-dot laser utilizing GaAs photonic-crystal line-defect waveguide,” Opt. Express 12(22), 5502–5509 (2004). [CrossRef] [PubMed]
  10. R. Fenollosa, F. Meseguer, and M. Tymczenko, “Silicon Colloids: From Microcavities to Photonic Sponges,” Adv. Mater. 20(1), 95–98 (2008). [CrossRef]
  11. R. Fenollosa, F. Meseguer, and M. Tymczenko, Spain Patent P200701681, 2007.
  12. W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968). [CrossRef]
  13. P. R. Conwell, P. W. Barber, and C. K. Rushforth, “Resonant spectra of dielectric spheres,” J. Opt. Soc. Am. A 1(1), 62–67 (1984). [CrossRef]
  14. C. F. Bohren, and D. R. Huffman, Absorption and Scattering of Light by Small Particles (JohnWiley & Sons, New York, NY 1998).
  15. P. W. Barber, and S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, Singapore, 1990).
  16. E. Palik, Handbook of Optical Constants of Solids, Vol. 1 (Academic Press, New York, NY 1985).
  17. J. Ng, C. T. Chan, P. Sheng, and Z. Lin, “Strong optical force induced by morphology-dependent resonances,” Opt. Lett. 30(15), 1956–1958 (2005). [CrossRef] [PubMed]
  18. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003). [CrossRef] [PubMed]
  19. F. J. García de Abajo, “Interaction of Radiation and Fast Electrons with Clusters of Dielectrics: A Multiple Scattering Approach,” Phys. Rev. Lett. 82(13), 2776–2779 (1999). [CrossRef]
  20. E. Xifré-Pérez, F. J. García de Abajo, R. Fenollosa, and F. Meseguer, “Photonic binding in silicon-colloid microcavities,” Phys. Rev. Lett. 103(10), 103902 (2009). [CrossRef] [PubMed]
  21. Y. Tanaka, T. Asano, and S. Noda, “Design of Photonic Crystal Nanocavity with Q-Factor of ~109,” J. Lightwave Technol. 26(11), 1532–1539 (2008). [CrossRef]
  22. Y. Takahashi, Y. Tanaka, H. Hagino, T. Sugiya, Y. Sato, T. Asano, and S. Noda, “Design and demonstration of high-Q photonic heterostructure nanocavities suitable for integration,” Opt. Express 17(20), 18093–18102 (2009). [CrossRef] [PubMed]
  23. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Demonstration of Ultra-high-Q Small Volume Toroid Microcavities on a chip,” Appl. Phys. Lett. 85(25), 6113–6115 (2004). [CrossRef]
  24. V. B. Braginsky, M. L. Gorodetsky, and S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137(7-8), 393–397 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited