OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 4 — Feb. 14, 2011
  • pp: 3464–3470

Energy scaling of mode-locked fiber lasers with chirally-coupled core fiber

Simon Lefrancois, Thomas S. Sosnowski, Chi-Hung Liu, Almantas Galvanauskas, and Frank W. Wise  »View Author Affiliations

Optics Express, Vol. 19, Issue 4, pp. 3464-3470 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1403 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a mode-locked dissipative soliton laser based on large-mode-area chirally-coupled-core Yb-doped fiber. This demonstrates scaling of a fiber oscillator to large mode area in a format that directly holds the lowest-order mode and that is also compatible with standard fiber integration. With an all-normal-dispersion cavity design, chirped pulse energies above 40 nJ are obtained with dechirped durations below 200 fs. Using a shorter fiber, dechirped durations close to 100 fs are achieved at pump-limited energies. The achievement of correct energy scaling is evidence of single-transverse-mode operation, which is confirmed by beam-quality and spectral-interference measurements.

© 2011 Optical Society of America

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(320.5540) Ultrafast optics : Pulse shaping
(320.7090) Ultrafast optics : Ultrafast lasers
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: November 12, 2010
Revised Manuscript: December 21, 2010
Manuscript Accepted: January 18, 2011
Published: February 8, 2011

Simon Lefrancois, Thomas S. Sosnowski, Chi-Hung Liu, Almantas Galvanauskas, and Frank W. Wise, "Energy scaling of mode-locked fiber lasers with chirally-coupled core fiber," Opt. Express 19, 3464-3470 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Kafka, M. Watts, and J. Pieterse, "Picosecond and femtosecond pulse generation in a regeneratively mode-locked Ti-Sapphire laser," IEEE J. Quantum Electron. 28, 2151-2162 (1992). [CrossRef]
  2. F. Ilday, J. Buckley, W. Clark, and F. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 213902 (2004). [CrossRef] [PubMed]
  3. A. Chong, J. Buckley, W. Renninger, and F. Wise, "All-normal-dispersion femtosecond fiber laser," Opt. Express 14, 10095-10100 (2006). [CrossRef] [PubMed]
  4. A. Chong, W. H. Renninger, and F. W. Wise, "Properties of normal-dispersion femtosecond fiber lasers," J. Opt. Soc. Am. B 25, 140-148 (2008). [CrossRef]
  5. W. H. Renninger, A. Chong, and F. W. Wise, "Dissipative solitons in normal-dispersion fiber lasers," Phys. Rev. A 77, 023814 (2008). [CrossRef]
  6. N. G. R. Broderick, H. L. Offerhaus, D. J. Richardson, and R. A. Sammut, "Power Scaling in Passively Mode-Locked Large-Mode Area Fiber Lasers," IEEE Photon. Technol. Lett. 10, 1718-1720 (1998). [CrossRef]
  7. A. Tünnermann, T. Schreiber, and J. Limpert, "Fiber lasers and amplifiers: an ultrafast performance evolution," Appl. Opt. 49, F71-F78 (2010). [CrossRef] [PubMed]
  8. S. Lefrancois, K. Kieu, Y. Deng, J. D. Kafka, and F. W. Wise, "Scaling of dissipative soliton fiber lasers to megawatt peak powers by use of large area photonic crystal fiber," Opt. Lett. 35, 1569-1571 (2010). [CrossRef] [PubMed]
  9. C. Lecaplain, B. Ortaç, G. Machinet, J. Boullet, M. Baumgartl, T. Schreiber, E. Cormier, and A. Hideur, "High-energy femtosecond photonic crystal fiber laser," Opt. Lett. 35, 3156-3158 (2010). [CrossRef] [PubMed]
  10. J. Koplow, D. Kliner, and L. Goldberg, "Single-mode operation of a coiled multimode fiber amplifier," Opt. Lett. 25, 442-444 (2000). [CrossRef]
  11. M. Fermann, A. Galvanauskas, and M. Hofer, "Ultrafast pulse sources based on multi-mode optical fibers," Appl. Phys. B 70, S13-S23 (2000).
  12. E. Ding, J. N. Kutz, S. Lefrancois, and F. W. Wise, "Passive mode-locking using multi-mode fiber," Proc. SPIE (to be published).
  13. L. Dong, H. A. McKay, L. Fu, M. Ohta, A. Marcinkevicius, S. Suzuki, and M. E. Fermann, "Ytterbium-doped all glass leakage channel fibers with highly fluorine-doped silica pump cladding," Opt. Express 17, 8962-8969 (2009). [CrossRef] [PubMed]
  14. C. Lecaplain, A. Hideur, S. Fevrier, and P. Roy, "Mode-locked Yb-doped Bragg fiber laser," Opt. Lett. 34, 2879-2881 (2009). [CrossRef] [PubMed]
  15. C. H. Liu, G. Chang, N. Litchinitser, A. Galvanauskas, D. Guertin, N. Jacobson, and K. Tankala, "Effectively Single-Mode Chirally-Coupled Core Fiber," in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper ME2.
  16. S. Huang, C. Zhu, C. H. Liu, X. Ma, C. Swan, and A. Galvanauskas, "Power scaling of CCC fiber based lasers," in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CThGG1.
  17. N. B. Chichkov, K. Hausmann, D. Wandt, U. Morgner, J. Neumann, and D. Kracht, "50 fs pulses from an allnormal dispersion erbium fiber oscillator," Opt. Lett. 35, 3081-3083 (2010). [CrossRef] [PubMed]
  18. A. Chong, W. H. Renninger, and F. W. Wise, "All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ," Opt. Lett. 32, 2408-2410 (2007). [CrossRef] [PubMed]
  19. H. W. Chen, T. Sosnowski, C. H. Liu, L. J. Chen, J. R. Birge, A. Galvanauskas, F. X. Kärtner, and G. Chang, "Chirally-coupled-core Yb-fiber laser delivering 80-fs pulses with diffraction-limited beam quality warranted by a high-dispersion mirror based compressor," Opt. Express 18, 24699-24705 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited