OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 4 — Feb. 14, 2011
  • pp: 3494–3502

A closed-form solution of the bit-error rate for optical wireless communication systems over atmospheric turbulence channels

Anhong Dang  »View Author Affiliations


Optics Express, Vol. 19, Issue 4, pp. 3494-3502 (2011)
http://dx.doi.org/10.1364/OE.19.003494


View Full Text Article

Enhanced HTML    Acrobat PDF (1125 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Atmospheric turbulence is a major limiting factor in an optical wireless communication (OWC) link. The turbulence distorts the phase of the propagating optical fields and limits the focusing capabilities of the telescope antennas. Hence, a detector array is required to capture the widespread signal energy in the focal-plane. This paper addresses the bit-error rate (BER) performance of optical wireless communication (OWC) systems employing a detector array in the presence of turbulence. Here, considering the gamma-gamma turbulence model, we propose a blind estimation scheme that provides the closed-form expression of the BER by exploiting the information of the data output of each pixel, which is based on the singular value decomposition of the sample matrix of the received signals after the code-matched filter. Instead of assuming spatially white additive noise, we consider the case where the noise spatial covariance matrix is unknown. The new method can be applied to either the single transmitter or the multi-transmitter cases. Simulation results for different Rytov variances are presented, which conform closely to the results of the proposed model.

© 2011 OSA

OCIS Codes
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(010.3310) Atmospheric and oceanic optics : Laser beam transmission
(060.2605) Fiber optics and optical communications : Free-space optical communication

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: November 24, 2010
Revised Manuscript: January 16, 2011
Manuscript Accepted: February 1, 2011
Published: February 8, 2011

Citation
Anhong Dang, "A closed-form solution of the bit-error rate for optical wireless communication systems over atmospheric turbulence channels," Opt. Express 19, 3494-3502 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-4-3494


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. W. S. Chan, “Optical space communications,” IEEE J. Sel. Top. Quantum Electron. 6(6), 959–975 (2000). [CrossRef]
  2. D. O'Brien and M. Katz, “Optical wireless communications within fourth-generation wireless systems [Invited],” J. Opt. Netw. 4(6), 312–322 (2005). [CrossRef]
  3. J. C. Juarez, A. Dwivedi, A. R. Hammons, S. D. Jones, V. Weerackody, and R. A. Nichols, “Free-Space Optical Communications for Next-generation Military Networks,” IEEE Commun. Mag. 44(11), 46–51 (2006). [CrossRef]
  4. J. A. Louthain and J. D. Schmidt, “Anisoplanatism in airborne laser communication,” Opt. Express 16(14), 10769–10785 (2008). [CrossRef] [PubMed]
  5. F. Xu, A. Khalighi, P. Causs, and S. Bourennane, “Channel coding and time-diversity for optical wireless links,” Opt. Express 17(2), 872–887 (2009). [CrossRef] [PubMed]
  6. L. C. Andrews, R. L. Phillips, C. Y. Hopen, and M. A. Al-Habash, “Theory of optical scintillation,” J. Opt. Soc. Am. 16(6), 1417–1429 (1999). [CrossRef]
  7. V. A. Vilnrotter and M. Srinivasan, “Adaptive detector arrays for optical communications receivers,” IEEE Trans. Commun. 50(7), 1091–1097 (2002). [CrossRef]
  8. J. Horwath, N. Perlot, M. Knapek, and F. Moll, “Experimental verification of optical backhaul links for high-altitude platform networks: Atmospheric turbulence and downlink availability,” Int. J. Satell. Commun. Network 25(5), 501–528 (2007). [CrossRef]
  9. R. M. Gagliardi, and S. Karp, Optical Commun., Second Edition (John Wiley and Sons, New York, 1995).
  10. L. C. Andrews, and R. L. Phillips, Laser Beam Propagation through Random Media, Second Edition (SPIE Optical Engineering Press, Bellingham, 2005).
  11. H. Hemmati, ed., Deep space optical comunications, (John Wiley and Sons, New Jersey, 2006).
  12. W. Mao and J. M. Kahn, “Free-space heterochronous imaging reception of multiple optical signals,” IEEE Trans. Commun. 52(2), 269–279 (2004). [CrossRef]
  13. G. Kats and S. Arnon, “Analysis of optical coherence multiplexing networks for satellite communication,” IEEE Trans. Wirel. Comm. 3(5), 1444–1451 (2004). [CrossRef]
  14. R. M. Gagliardi, “Pulse-coded multiple access in space optical communications,” IEEE J. Sel. Areas Comm. 13(3), 603–608 (1995). [CrossRef]
  15. Y. Han, A. Dang, J. Tang, and H. Guo, “Weak beacon detection for air-to-ground optical wireless link establishment,” Opt. Express 18(3), 1841–1853 (2010). [CrossRef] [PubMed]
  16. P. Prucnal, M. Santoro, and T. Fan, “Spread spectrum fiber-optic local area network using optical processing,” J. Lightwave Technol. 4(5), 547–554 (1986). [CrossRef]
  17. J. A. Salehi, “Code division multiple access techniques in optical fiber networks,” IEEE Trans. Commun. 37(8), 824–833 (1989). [CrossRef]
  18. S. Arnon, “Free-space optical communication: detector array aperture for optical communication through thin clouds,” Opt. Eng. 34(2), 518–522 (1995). [CrossRef]
  19. G. H. Golub, and C. F. V. Loan, Matrix Computation. (Baltimore, MD: Johns Hopkins Univ. Press, 1996).
  20. E. Moulines, P. Duhamel, J. Cardoso, and S. Mayrargue, “Subspace methods for the blind identification of multichannel FIR filters,” IEEE Trans. Signal Process. 43(2), 516–525 (1995). [CrossRef]
  21. D. L. Fried, “Optical Resolution through a Randomly Inhomogeneous Medium,” J. Opt. Soc. Am. 56(10), 1372–1379 (1966). [CrossRef]
  22. M. Uysal, J. Li, and M. Yu, “Error rate performance analysis of coded free-space optical links over gamma-gamma atmospheric turbulence channels,” IEEE Trans. Wirel. Comm. 5(6), 1229–1233 (2006). [CrossRef]
  23. M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng. 40(8), 1554–1562 (2001). [CrossRef]
  24. A. P. Prudnikov, Y. A. Brychkov, and O. I. Marichev, Integral and Series, vol. 3: More Special Functions (Amsterdam: Gordon and Breach Science Publishers, 1986).
  25. N. Takeuchi, N. Sugimoto, H. Baba, and K. Sakurai, “Random modulation cw lidar,” Appl. Opt. 22(9), 1382–1385 (1983). [CrossRef] [PubMed]
  26. K. Kiasaleh, “Performance of APD-based, PPM free-space optical communication systems in atmospheric turbulence,” IEEE Trans. Commun. 53(9), 1455–1461 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited