OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 4 — Feb. 14, 2011
  • pp: 3542–3552

Experimental quantum tomography of photonic qudits via mutually unbiased basis

G. Lima, L. Neves, R. Guzmán, E. S. Gómez, W. A. T. Nogueira, A. Delgado, A. Vargas, and C. Saavedra  »View Author Affiliations

Optics Express, Vol. 19, Issue 4, pp. 3542-3552 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1051 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present the experimental quantum tomography of 7- and 8-dimensional quantum systems based on projective measurements in the mutually unbiased basis (MUB-QT). One of the advantages of MUB-QT is that it requires projections from a minimal number of bases to be performed. In our scheme, the higher dimensional quantum systems are encoded using the propagation modes of single photons, and we take advantage of the capabilities of amplitude- and phase-modulation of programmable spatial light modulators to implement the MUB-QT.

© 2011 Optical Society of America

OCIS Codes
(230.0230) Optical devices : Optical devices
(270.0270) Quantum optics : Quantum optics

ToC Category:
Quantum Optics

Original Manuscript: January 10, 2011
Revised Manuscript: January 28, 2011
Manuscript Accepted: January 30, 2011
Published: February 8, 2011

G. Lima, L. Neves, R. Guzmán, E. S. Gómez, W. A. T. Nogueira, A. Delgado, A. Vargas, and C. Saavedra, "Experimental quantum tomography of photonic qudits via mutually unbiased basis," Opt. Express 19, 3542-3552 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. U. Fano, “Description of states in quantum mechanics by density matrix and operator techniques,” Rev. Mod. Phys. 29, 74–93 (1957). [CrossRef]
  2. D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001). [CrossRef]
  3. R. T. Thew, K. Nemoto, A. G. White, and W. J. Munro, “Qudit quantum-state tomography,” Phys. Rev. A 66, 012303 (2002). [CrossRef]
  4. M. D. de Burgh, N. K. Langford, A. C. Doherty, and A. Gilchrist, “Choice of measurement sets in qubit tomography,” Phys. Rev. A 78, 052122 (2008). [CrossRef]
  5. W. K. Wootters, and B. D. Fields, “Optimal state-determination by mutually unbiased measurements,” Ann. Phys. 191, 363–381 (1989). [CrossRef]
  6. R. B. A. Adamson, and A. M. Steinberg, “Improving quantum state estimation with mutually unbiased bases,” Phys. Rev. Lett. 105, 030406 (2010). [CrossRef] [PubMed]
  7. H. Haffner, W. Hansel, C. F. Roos, and J. Benhelm, “D. Chek-al-kar, M. Chwalla, T. Korber, U. D. Rapol, M. Riebe, P. O. Schmidt, C. Becher, O. Guhne,W. Dur, and R. Blatt, “Scalable multiparticle entanglement of trapped ions,” Nature 438, 643–646 (2005). [CrossRef] [PubMed]
  8. N. K. Langford, R. B. Dalton, M. D. Harvey, J. L. O’Brien, G. J. Pryde, A. Gilchrist, S. D. Bartlett, and A. G. White, “Measuring entangled qutrits and their use for quantum bit commitment,” Phys. Rev. Lett. 93, 053601 (2004). [CrossRef] [PubMed]
  9. J. B. Altepeter, E. R. Jeffrey, and P. G. Kwiat, Photonic State Tomography, Advances in AMO Physics (Elsevier, 2006), Vol. 52, Chap. 3.
  10. I. D. Ivanovic, “Geometrical description of quantal state determination,” J. Phys. A: Math. Theor. 14, 3241–3245 (1981). [CrossRef]
  11. A. B. Klimov, C. Muoz, A. Fern’andez, and C. Saavedra, “Optimal quantum-state reconstruction for cold trapped ions,” Phys. Rev. A 77, 060303 (2008). [CrossRef]
  12. T. Durt, D. Kaszlikowski, J. L. Chen, and L. C. Kwek, “Security of quantum key distributions with entangled qudits,” Phys. Rev. A 69, 032313 (2004). [CrossRef]
  13. D. Kaszlikowski, P. Gnaci’nski, M. Zukowski, W. Miklaszewski, and A. Zeilinger, “Violations of local realism by two entangled n-dimensional systems are stronger than for two qubit,” Phys. Rev. Lett. 85, 4418–4421 (2000). [CrossRef] [PubMed]
  14. L. Neves, G. Lima, J. G. A. G’omez, C. H. Monken, C. Saavedra, and S. P’adua, “Generation of entangled states of qudits using twin photons,” Phys. Rev. Lett. 94, 100501 (2005). [CrossRef] [PubMed]
  15. M. N. O. Hale, I. A. Khan, R. W. Boyd, and J. C. Howell, “Pixel entanglement: experimental realization of optically entangled d = 3 and d = 6 qudits,” Phys. Rev. Lett. 94, 220501 (2005).
  16. G. Lima, A. Vargas, L. Neves, R. Guzm’an, and C. Saavedra, “Manipulating spatial qudit states with programmable optical devices,” Opt. Express 17, 10688–10696 (2009). [CrossRef] [PubMed]
  17. R. Jozsa, “Fidelity for mixed quantum states,” J. Mod. Opt. 41, 2315–2323 (1994). [CrossRef]
  18. G. Lima, L. Neves, I. F. Santos, J. G. Aguirre G’omez, C. Saavedra, and S. P’adua, “Propagation of spatially entangled qudits through free space,” Phys. Rev. A 73, 032340 (2006). [CrossRef]
  19. G. Lima, F. A. Torres-Ruiz, L. Neves, A. Delgado, C. Saavedra, and S. P’adua, “Measurement of spatial qubits,” J. Phys. B 41, 185501 (2008). [CrossRef]
  20. G. Taguchi, T. Dougakiuchi, N. Yoshimoto, K. Kasai, M. Iinuma, H. F. Hofmann, and Y. Kadoya, “Measurement and control of spatial qubits generated by passing photons through double slits,” Phys. Rev. A 78, 012307 (2008). [CrossRef]
  21. M. S. Kaznady, and D. F. V. James, “Numerical strategies for quantum tomography: alternatives to full optimization,” Phys. Rev. A 79, 022109 (2009). [CrossRef]
  22. A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935). [CrossRef]
  23. T. O. Maciel, and R. O. Vianna, “Viable entanglement detection of unknown mixed states in low dimensions,” Phys. Rev. A 80, 032325 (2009). [CrossRef]
  24. G. Lima, E. S. G’omez, A. Vargas, R. O. Vianna, and C. Saavedra, “Fast entanglement detection for unknown states of two spatial qutrits,” Phys. Rev. A 82, 012302 (2010). [CrossRef]
  25. R. J. C. Spreeuw, “Classical wave-optics analogy of quantum-information processing,” Phys. Rev. A 63, 062302 (2001). [CrossRef]
  26. S. P. Walborn, D. S. Lamelle, M. P. Almeida, and P. H. Souto Ribeiro, “Quantum key distribution with higherorder alphabets using spatially encoded qudits,” Phys. Rev. Lett. 96, 090501 (2006). [CrossRef] [PubMed]
  27. G. Puentes, C. La Mela, S. Ledesma, C. Iemmi, J. P. Paz, and M. Saraceno, “Optical simulation of quantum algorithms using programmable liquid-crystal displays,” Phys. Rev. A 69, 042319 (2004). [CrossRef]
  28. J. L. Romero, G. Bork, A. B. Klimov, and L. L. S’anchez-Soto, “Structure of the sets of mutually unbiased bases for N qubits,” Phys. Rev. A 72, 062310 (2005). [CrossRef]
  29. J. M. Renes, R. Blume-Kohout, A. J. Scott, and C. M. Caves, “Symmetric informationally complete quantum measurements,” J. Math. Phys. 45, 2171–2181 (2004). [CrossRef]
  30. I. Sainz, L. Roa, and A. B. Klimov, “Unbiased nonorthogonal bases for tomographic reconstruction,” Phys. Rev. A 81, 052114 (2010). [CrossRef]
  31. C. Paiva, E. Burgos-Inostroza, O. Jim’enez, and A. Delgado, “Quantum tomography via equidistant states,” Phys. Rev. A 82, 032115 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited