OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 4 — Feb. 14, 2011
  • pp: 3562–3575

Squeezing and expanding light without reflections via transformation optics

C. García-Meca, M. M. Tung, J. V. Galán, R. Ortuño, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez  »View Author Affiliations

Optics Express, Vol. 19, Issue 4, pp. 3562-3575 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1452 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study the reflection properties of squeezing devices based on transformation optics. An analytical expression for the angle-dependent reflection coefficient of a generic three-dimensional squeezer is derived. In contrast with previous studies, we find that there exist several conditions that guarantee no reflections so it is possible to build transformation-optics-based reflectionless squeezers. Moreover, it is shown that the design of antireflective coatings for the non-reflectionless case can be reduced to matching the impedance between two dielectrics. We illustrate the potential of these devices by proposing two applications in which a reflectionless squeezer is the key element: an ultra-short perfect coupler for high-index nanophotonic waveguides and a completely flat reflectionless hyperlens. We also apply our theory to the coupling of two metallic waveguides with different cross-section. Finally, we show how the studied devices can be implemented with non-magnetic isotropic materials by using a quasi-conformal mapping technique.

© 2011 OSA

OCIS Codes
(220.3630) Optical design and fabrication : Lenses
(230.0230) Optical devices : Optical devices
(160.3918) Materials : Metamaterials

ToC Category:
Physical Optics

Original Manuscript: October 26, 2010
Revised Manuscript: December 30, 2010
Manuscript Accepted: January 3, 2011
Published: February 9, 2011

C. García-Meca, M. M. Tung, J. V. Galán, R. Ortuño, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, "Squeezing and expanding light without reflections via transformation optics," Opt. Express 19, 3562-3575 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Yang, M. A. Abushagur, and Z. Lu, “Efficiently squeezing near infrared light into a 21 nm-by-24 nm nanospot,” Opt. Express 16(24), 20142–20148 (2008). [CrossRef] [PubMed]
  2. L. Vivien, S. Laval, E. Cassan, X. Le Roux, and D. Pascal, “2-D taper for low-loss coupling between polarization-insensitive microwaveguides and single-mode optical fibers,” J. Lightwave Technol. 21(10), 2429–2433 (2003). [CrossRef]
  3. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006). [CrossRef] [PubMed]
  4. U. Leonhardt and T. G. Philbin, “General Relativity in Electrical Engineering,” N. J. Phys. 8(10), 247 (2006). [CrossRef]
  5. M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100(6), 063903 (2008). [CrossRef] [PubMed]
  6. M. Rahm, D. A. Roberts, J. B. Pendry, and D. R. Smith, “Transformation-optical design of adaptive beam bends and beam expanders,” Opt. Express 16(15), 11555–11567 (2008). [CrossRef] [PubMed]
  7. W. Yan, M. Yan, and M. Qiu, “Necessary and sufficient conditions for reflectionless transformation media in an isotropic and homogenous background,” arXiv:0806.3231v1 (2008).
  8. T. M. Grzegorczyk, X. Chen, J. Pacheco, J. Chen, B. I. Wu, and J. A. Kong, “Reflection coefficients and Goos-Hanchen shifts in anisotropic and bianisotropic left-handed metamaterials,” Prog. Electromagn. Res. 51, 83–113 (2005). [CrossRef]
  9. E. Hecht, Optics, (Addison Wesley, 4th edition, 2001).
  10. D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002). [CrossRef]
  11. G. Roelkens, D. Vermeulen, D. Van Thourhout, R. Baets, S. Brision, P. Lyan, P. Gautier, and J. M. Fedeli, “High efficiency diffractive grating couplers for interfacing a single mode optical fiber with a nanophotonic silicon-on-insulator waveguide circuit,” Appl. Phys. Lett. 92(13), 131101 (2008). [CrossRef]
  12. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005). [CrossRef]
  13. J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008). [CrossRef] [PubMed]
  14. B. Vasić, G. Isic, R. Gajic, and K. Hingerl, “Coordinate transformation based design of confined metamaterial structures,” Phys. Rev. B 79(8), 85103 (2009). [CrossRef]
  15. V. M. Shalaev, “Physics. Transforming light,” Science 322(5900), 384–386 (2008). [CrossRef] [PubMed]
  16. Y. Xiong, Z. Liu, and X. Zhang, “A simple design of flat hyperlens for lithography and imaging with half-pitch resolution down to 20 nm,” Appl. Phys. Lett. 94(20), 203108 (2009). [CrossRef]
  17. A. V. Kildishev and E. E. Narimanov, “Impedance-matched hyperlens,” Opt. Lett. 32(23), 3432–3434 (2007). [CrossRef] [PubMed]
  18. D. P. Gaillot, C. Croënne, F. Zhang, and D. Lippens, “Transformation optics for the full dielectric electromagnetic cloak and metal–dielectric planar hyperlens,” N. J. Phys. 10(11), 115039 (2008). [CrossRef]
  19. P. H. Tichit, S. N. Burokur, and A. de Lustrac, “Waveguide taper engineering using coordinate transformation technology,” Opt. Express 18(2), 767–772 (2010). [CrossRef] [PubMed]
  20. X. Zang and C. Jiang, “Manipulating the field distribution via optical transformation,” Opt. Express 18(10), 10168–10176 (2010). [CrossRef] [PubMed]
  21. Z. Chang, X. Zhou, J. Hu, and G. Hu, “Design method for quasi-isotropic transformation materials based on inverse Laplace’s equation with sliding boundaries,” Opt. Express 18(6), 6089–6096 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited