OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 4 — Feb. 14, 2011
  • pp: 3604–3611

Resonantly diode-pumped Ho3+:Y2O3 ceramic 2.1 µm laser

G. A. Newburgh, Akil Word-Daniels, Arocksiamy Michael, Larry D. Merkle, Akio Ikesue, and Mark Dubinskii  »View Author Affiliations


Optics Express, Vol. 19, Issue 4, pp. 3604-3611 (2011)
http://dx.doi.org/10.1364/OE.19.003604


View Full Text Article

Enhanced HTML    Acrobat PDF (1079 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report what is believed to be the first laser operation based on Ho3+-doped Y2O3. The Ho3+:Y2O3 ceramic was resonantly diode-pumped at ~1.93 µm to produce up to 2.5 W of continuous wave (CW) output power at ~2.12 µm. The laser had a slope efficiency of ~35% with respect to absorbed power and a beam propagation factor of M2 ~1.1. We have measured the absorption and stimulated emission cross sections of Ho3+:Y2O3 at 77 K and 300 K and present the calculated gain cross section spectrum at 77 K for different excited state inversion levels.

© 2011 OSA

OCIS Codes
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3580) Lasers and laser optics : Lasers, solid-state

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: January 4, 2011
Revised Manuscript: February 1, 2011
Manuscript Accepted: February 1, 2011
Published: February 9, 2011

Citation
G. A. Newburgh, Akil Word-Daniels, Arocksiamy Michael, Larry D. Merkle, Akio Ikesue, and Mark Dubinskii, "Resonantly diode-pumped Ho3+:Y2O3 ceramic 2.1 µm laser," Opt. Express 19, 3604-3611 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-4-3604


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. W. Kang, H. Lee, J. Petersen, J. H. Teichman, and A. J. Welch, “Investigation of Stone Retropulsion as a Function of Ho:YAG Laser Pulse Duration,” Proc. SPIE 6078, 607815, 607815-11 (2006). [CrossRef]
  2. T. Watanabe, K. Iwai, and Y. Matsuura, “Simultaneous irradiation of Er:YAG and Ho:YAG lasers for efficient ablation of hard tissues,” Proc. SPIE 7173, 71730R, 71730R-6 (2009). [CrossRef]
  3. T. M. Taczak and D. K. Killinger, “Development of a tunable, narrow-linewidth, cw 2.066-µm Ho:YLF laser for remote sensing of atmospheric CO2 and H2O,” Appl. Opt. 37(36), 8460–8476 (1998). [CrossRef]
  4. K. Scholle, E. Heumann, and G. Huber, “Single mode Tm and Tm,Ho:LuAG lasers for LIDAR applications,” Laser Phys. Lett. 1(6), 285–290 (2004). [CrossRef]
  5. P. A. Budni, L. A. Pomeranz, M. L. Lemons, C. A. Miller, J. R. Mosto, and E. P. Chicklis, “Efficient mid infrared laser using 1.9 micron pumped Ho:YAG and ZnGeP2 optical parametric oscillators,” J. Opt. Soc. Am. B 17(5), 723–728 (2000). [CrossRef]
  6. H. W. Gandy, and R. J. Ginther, “Stimulated Emission from Holmium Activated Silicate Glass,” Proc IRE correspondence, 50(10), 2113–2114 (1962).
  7. L. F. Johnson, G. D. Boyd, and K. Nassau, “Optical Maser Characteristics of Ho+3 in CaWO4,” Proc IRE correspondence, 50(1) 87–88 (1962).
  8. L. F. Johnson, J. E. Geusic, and L. G. Van Uitert, “Coherent Oscillations from Tm3+, Ho3+, and Er3+ Ions in Yttrium Aluminum Garnet,” Appl. Phys. Lett. 7(5), 127–129 (1965). [CrossRef]
  9. G. J. Kintz, L. Esterowitz, and R. Allen, “CW Diode-Pumped Tm+3, Ho+3:YAG 2.1 µm Room Temperature Laser,” Electron. Lett. 23(12), 616–617 (1987). [CrossRef]
  10. N. Ter-Gabrielyan, L. D. Merkle, A. Ikesue, and M. Dubinskii, “Ultralow quantum-defect eye-safe Er:Sc2O3 laser,” Opt. Lett. 33(13), 1524–1526 (2008). [CrossRef] [PubMed]
  11. J. Kwiatkowski, J. K. Jabczynski, L. Gorajek, W. Zendzian, H. Jelínková, J. Šulc, M. Němec, and P. Koranda, “Resonantly pumped tunable Ho:YAG laser,” Laser Phys. Lett. 6(7), 531–534 (2009). [CrossRef]
  12. S. So, J. I. Mackenzie, D. P. Shepherd, W. A. Clarkson, J. G. Betterton, E. K. Gorton, and J. A. C. Terry, “Intra-cavity side-pumped Ho:YAG laser,” Opt. Express 14(22), 10481–10487 (2006). [CrossRef] [PubMed]
  13. D. W. Hart, M. Jani, and N. P. Barnes, “Room-temperature lasing of end-pumped Ho:Lu(3)Al(5)O(12).,” Opt. Lett. 21(10), 728–730 (1996). [CrossRef] [PubMed]
  14. K. Scholle, P. Fuhrberg, “In-band pumping of high-power Ho:YAG lasers by laser diodes at 1.9µm,” OSA CLEO/QELS CTuAA1 (2008).
  15. T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007). [CrossRef]
  16. L. Fornasiero, E. Mix, V. Peters, K. Petermann, and G. Huber, “Czochralski growth and laser parameters of RE3+-doped Y2O3 and Sc2O3,” Ceram. Int. 26(6), 589–592 (2000). [CrossRef]
  17. A. Ikesue and Y. L. Aung, “Ceramic Laser Materials,” Nat. Photonics 2(12), 721–727 (2008). [CrossRef]
  18. J. B. Gruber, R. P. Leavitt, C. A. Morrison, and N. C. Chang, “Optical spectra, energy levels, and crystal-field analysis of tripositive rare-earth ions in Y2O3. IV. C3i sites,” J. Chem. Phys. 82(12), 5373–5378 (1985). [CrossRef]
  19. A. S. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared Cross - Section Measurements for Crystals Doped with Er+3, Tm+3, and Ho+3,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992). [CrossRef]
  20. S. D. Setzler, M. P. Francis, Y. E. Young, J. R. Konves, and E. P. Chicklis, “Resonantly Pumped Eyesafe Erbium Lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 645–657 (2005). [CrossRef]
  21. J. O. White, M. Dubinskii, L. D. Merkle, I. Kudryashov, and D. Garbuzov, “Resonant pumping and upconversion in 1.6 µm Er3+ lasers,” J. Opt. Soc. Am. B 24(9), 2454–2460 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited