OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 4 — Feb. 14, 2011
  • pp: 3612–3618

Fractal plasmonics: subdiffraction focusing and broadband spectral response by a Sierpinski nanocarpet

Giorgio Volpe, Giovanni Volpe, and Romain Quidant  »View Author Affiliations


Optics Express, Vol. 19, Issue 4, pp. 3612-3618 (2011)
http://dx.doi.org/10.1364/OE.19.003612


View Full Text Article

Enhanced HTML    Acrobat PDF (820 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Plasmonic nanostructures offer a great potential to enhance light-matter interaction at the nanometer scale. The response upon illumination at a given wavelength and polarization is governed by the characteristic lengths associated to the shape and size of the nanostructure. Here, we propose the use of engineered fractal plasmonic structures to extend the degrees of freedom and the parameters available for their design. In particular, we focus on a paradigmatic fractal geometry, namely the Sierpinski carpet. We explore the possibility of using it to achieve a controlled broadband spectral response by controlling the degree of its fractal complexity. Furthermore, we investigate some other arising properties, such as subdiffraction limited focusing and its potential use for optical trapping of nano-objects. An attractive advantage of the focusing over more standard geometries, such as gap antennas, is that it occurs away from the metal surface (≈ 80nm) at the center of the nanostructure, leaving an open space accessible to objects for enhanced light-matter interaction.

© 2011 Optical Society of America

OCIS Codes
(240.0240) Optics at surfaces : Optics at surfaces
(240.6690) Optics at surfaces : Surface waves
(260.6970) Physical optics : Total internal reflection

ToC Category:
Optics at Surfaces

History
Original Manuscript: January 10, 2011
Revised Manuscript: February 3, 2011
Manuscript Accepted: February 3, 2011
Published: February 9, 2011

Virtual Issues
Vol. 6, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Giorgio Volpe, Giovanni Volpe, and Romain Quidant, "Fractal plasmonics: subdiffraction focusing and broadband spectral response by a Sierpinski nanocarpet," Opt. Express 19, 3612-3618 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-4-3612


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. B. Mandelbrot, The Fractal Geometry of Nature (W. H. Freeman, San Francisco, 1982).
  2. W. Sierpinski, “Sur une courbe cantorienne qui contient une image biunivoque et continue de toute courbe donnée,” C. r. hebd. Seanc. Acad. Sci., Paris  162, 629–632 (1916).
  3. H.-O. Peitgen, H. Jürgens, and D. Saupe, Chaos and Fractals: New Frontiers of Science (Springer-Verlag, New York, 1992).
  4. D. H. Werner, and S. Ganguly, “An overview of fractal antenna engineering research,” IEEE Ant. Propag. Mag. 45, 38–57 (2003). [CrossRef]
  5. W. Wen, L. Zhou, J. Li, W. Ge, C. T. Chan, and P. Sheng, “Subwavelength Photonic Band Gaps from Planar Fractals,” Phys. Rev. Lett. 82, 223901 (2003).
  6. L. Zhou, W. Wen, C. T. Chan, and P. Sheng, “Reflectivity of planar metallic fractal patterns,” Appl. Phys. Lett. 89, 1012–1014 (2002).
  7. Y. J. Bao, B. Zhang, Z. Wu, J. W. Si, M. Wang, R. W. Peng, X. Lu, Z. F. Li, X. P. Hao, and N. B. Ming, “Surface-plasmon-enhanced transmission through metallic film perforated with fractal-featured aperture array,” Appl. Phys. Lett. 90, 251914 (2007). [CrossRef]
  8. F. Miyamaru, Y. Saito, M. W. Takeda, B. Hou, L. Liu, W. Wen, and P. Sheng, “Terahertz electric response of fractal metamaterial structures,” Phys. Rev. B 77, 045124 (2008). [CrossRef]
  9. X. Huang, S. Xiao, J. Huangfu, Z. Wang, L. Ran, and L. Zhou, “Fractal plasmonic metamaterials for subwavelength imaging,” Opt. Express 18, 10377–10387 (2010). [CrossRef] [PubMed]
  10. S. Jia, and J. W. Fleischer, “Nonlinear light propagation in fractal waveguide arrays,” Opt. Express 18, 14409–14415 (2010). [CrossRef] [PubMed]
  11. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, New York, 1988).
  12. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). [CrossRef] [PubMed]
  13. P. Zijilstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459, 410–413 (2009). [CrossRef]
  14. T. Yano, P. Verma, Y. Saito, T. Ichimura, and S. Kawata, “Pressure-assisted tip-enhanced Raman imaging at a resolution of a few nanometers,” Nature Photon. 3, 473–477 (2009). [CrossRef]
  15. K. R. Catchpole, and A. Polman, “Plasmonic solar cells,” Opt. Express 16, 21793–21800 (2008). [CrossRef] [PubMed]
  16. G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface Plasmon Radiation Forces,” Phys. Rev. Lett. 96, 238101 (2006). [CrossRef] [PubMed]
  17. M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3, 477–480 (2007). [CrossRef]
  18. M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, “Surface Plasmon Optical Tweezers: Tunable Optical Manipulation in the Femtonewton Range,” Phys. Rev. Lett. 100, 186804 (2008). [CrossRef] [PubMed]
  19. S. S. Acimovic, M. P. Kreuzer, M. U. Gonzalez, and R. Quidant, “Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing,” ACS Nano 3, 1231–1237 (2009).
  20. L. Novotny, “Effective Wavelength Scaling for Optical Antennas,” Phys. Rev. Lett. 98, 266802 (2007). [CrossRef] [PubMed]
  21. P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant Optical Antennas,” Science 308, 1607–1609 (2005). [CrossRef] [PubMed]
  22. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional Emission of a Quantum Dot Coupled to a Nnanoantenna,” Science 329, 930–933 (2010). [CrossRef] [PubMed]
  23. V. M. Shalaev, and M. I. Stockman, “‘Fracatals: optical suscebtibility and giant Raman scattering,” Z. Phys. D 10, 71–79 (1988). [CrossRef]
  24. V. M. Shalaev, Optical properties of Nanostructured Random Media (Springer, New York, 2002). [CrossRef]
  25. D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon Scanning Tunneling Micrscopy Images of Optical Excitations of Fractal Metal Colloid Clusters,” Phys. Rev. Lett. 72, 4149 (1994). [CrossRef] [PubMed]
  26. S. L. Bozhevolnyi, V. A. Markel, V. Coello, and W. Kim, “andW. E. Shalaev, “Direct obesercation of localized dipolar excitations on rough nanostructured surfaces,” Phys. Rev. B 58, 11441 (1998). [CrossRef]
  27. V. Krachmalnicoff, E. Castani, Y. DeWilde, and R. Carminati, “Fluctuations of the Local Density of States Probe Licalized Surface Plasmons on Disordered Metal Films,” Phys. Rev. Lett. 105, 183901 (2010). [CrossRef]
  28. C. Girard, “Near fields in nanostructures,” Rep. Prog. Phys. 68, 1883–1933 (2005). [CrossRef]
  29. A. D. Yaghjian, “Electric Dyadic Green’s Functions in the Source Region,” Proc. IEEE 68, 248–263 (1980). [CrossRef]
  30. P. K. Jain, W. Huang, and M. A. El-Sayed, “On the Universal Scaling Behaviour of the Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs: A Plasmon Ruler Equation,” Nano Lett. 7, 2080–2088 (2007). [CrossRef]
  31. J. S. Huang, V. Callegari, P. Geisler, C. Bruning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagoini, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nature Commun. 1, 150 (2010). [CrossRef]
  32. H. A. Atwater, and A. Polmari, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010). [CrossRef]
  33. E. D. Palik, Handbook of Otical Constants of Solids (Academic Press, Orlando, 1985).
  34. A. Grbic, and G. V. Eleftheriades, “Overcoming the Diffraction Limit with a Planar Left-Handed Transmission-Line Lens,” Phys. Rev. Lett. 92, 117403 (2004). [CrossRef] [PubMed]
  35. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-Diffraction-Limited Optical Imaging with a Silver Superlens,” Science 308, 534–537 (2005). [CrossRef] [PubMed]
  36. G. Volpe, S. Cherukulappurath, R. Juanola Parramon, G. Molina-Terriza, and R. Quidant, “Controlling the optical near field of nanoantennas with spatial phase-shaped beams,” Nano Lett. 9, 3608–3611 (2009). [CrossRef] [PubMed]
  37. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, and G. S. Kino, “andW. E. Moerner, “Improving the Mismatch between Light and Nanoscale Objects with Gold Bowtie Nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005). [CrossRef] [PubMed]
  38. R. Quidant, D. Petrov, and G. Badenes, “Radiation forces on a Rayleigh dielectric sphere in a patterned optical near field,” Opt. Lett. 30, 1009–1011 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited