OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 4 — Feb. 14, 2011
  • pp: 3627–3636

Design of high-transmission metallic meander stacks with different grating periodicities for subwavelength-imaging applications

Philipp Schau, Karsten Frenner, Liwei Fu, Heinz Schweizer, Harald Giessen, and Wolfgang Osten  »View Author Affiliations


Optics Express, Vol. 19, Issue 4, pp. 3627-3636 (2011)
http://dx.doi.org/10.1364/OE.19.003627


View Full Text Article

Enhanced HTML    Acrobat PDF (1530 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

When replacing a bulk negative index material (NIM) with two resonant surfaces that allow for surface plasmon polariton (SPP) propagation it is possible to recreate the same near-field imaging effects as with Pendry’s perfect lens. We show that a metallic meander structure is perfectly suited as such a resonant surface due to the tunability of the short (SRSPP) and long range surface plasmon (LRSPP) frequencies by means of geometrical variation. Furthermore, the Fano-type pass band between the SRSPP and LRSPP frequencies of a single meander sheet retains its dominant role when being stacked. Hence, the pass band frequency position, which is determined by the meander geometry, controls also the pass band of a meander stack. When building up stacks with different periodicities the pass band shifts in frequency for each sheet in a different way. We rigorously calculate the spectra of various meander designs and show that this shift can be compensated by changing the remaining geometrical parameters of each single sheet. We also present a basic idea how high- transmission stacks with different periodicities can be created to enable energy transfer at low loss over practically arbitrary distances inside such a stack. The possibility to stack meander sheets of varying periodicity might be the key to far field superlenses since a controlled transformation of evanescent modes to traveling wave modes of higher diffraction order could be enabled.

© 2011 OSA

OCIS Codes
(050.2230) Diffraction and gratings : Fabry-Perot
(050.2770) Diffraction and gratings : Gratings
(230.4170) Optical devices : Multilayers
(240.5420) Optics at surfaces : Polaritons
(240.6680) Optics at surfaces : Surface plasmons
(160.3918) Materials : Metamaterials

ToC Category:
Diffraction and Gratings

History
Original Manuscript: October 11, 2010
Revised Manuscript: December 19, 2010
Manuscript Accepted: January 21, 2011
Published: February 10, 2011

Citation
Philipp Schau, Karsten Frenner, Liwei Fu, Heinz Schweizer, Harald Giessen, and Wolfgang Osten, "Design of high-transmission metallic meander stacks with different grating periodicities for subwavelength-imaging applications," Opt. Express 19, 3627-3636 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-4-3627


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968). [CrossRef]
  2. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  3. A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B 74(7), 075103 (2006). [CrossRef]
  4. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247–8256 (2006). [CrossRef] [PubMed]
  5. L. V. Alekseyev and E. Narimanov, “Slow light and 3D imaging with non-magnetic negative index systems,” Opt. Express 14(23), 11184–11193 (2006). [CrossRef] [PubMed]
  6. S. Durant, Z. Liu, J. M. Steele, and X. Zhang, “Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit,” J. Opt. Soc. Am. B 23(11), 2383 (2006). [CrossRef]
  7. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007). [CrossRef] [PubMed]
  8. S. Maslovski and S. Tretyakov, “Phase conjugation and perfect lensing,” J. Appl. Phys. 94(7), 4241 (2003). [CrossRef]
  9. S. Maslovski, S. A. Tretyakov, and P. Alitalo, “Near-field enhancement and imaging in double planar polariton-resonant structures,” J. Appl. Phys. 96(3), 1293 (2004). [CrossRef]
  10. P. Alitalo, C. R. Simovski, A. Viitanen, and S. A. Tretyakov, “Near-field enhancement and subwavelength imaging in the optical region using a pair of two-dimensional arrays of metal nanospheres,” Phys. Rev. B 74(23), 235425 (2006). [CrossRef]
  11. C. R. Simovski, A. J. Viitanen, and S. A. Tretyakov, “Resonator mode in chains of silver spheres and its possible application,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(6), 066606 (2005). [CrossRef]
  12. H. Schweizer, L. Fu, H. Gräbeldinger, H. Guo, N. Liu, S. Kaiser, and H. Giessen, “Negative permeability around 630 nm in nanofabricated vertical meander metamaterials,” Phys. Status Solidi., A Appl. Mater. Sci. 204(11), 3886–3900 (2007). [CrossRef]
  13. L. Fu, H. Schweizer, T. Weiss, and H. Giessen, “Optical properties of metallic meanders,” J. Opt. Soc. Am. B 26(12), B111 (2009). [CrossRef]
  14. P. Johnson and R. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  15. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13(9), 1870 (1996). [CrossRef]
  16. T. Weiss, N. A. Gippius, S. G. Tikhodeev, G. Granet, and H. Giessen, “Efficient calculation of the optical properties of stacked metamaterials with a Fourier modal method,” J. Opt. A, Pure Appl. Opt. 11(11), 114019 (2009). [CrossRef]
  17. G. Granet, “Reformulation of the lamellar grating problem through the concept of adaptive spatial resolution,” J. Opt. Soc. Am. A 16(10), 2510 (1999). [CrossRef]
  18. I. R. Hooper and J. R. Sambles, “Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces,” Phys. Rev. B 70(4), 045421 (2004). [CrossRef]
  19. Z. Chen, I. R. Hooper, and J. R. Sambles, “Coupled surface plasmons on thin silver gratings,” J. Opt. A, Pure Appl. Opt. 10(1), 015007 (2008). [CrossRef]
  20. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010). [CrossRef] [PubMed]
  21. M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67(8), 085415 (2003). [CrossRef]
  22. P. Schau, K. Frenner, L. Fu, H. Schweizer, and W. Osten, “Coupling between surface plasmons and Fabry-Pérot modes in metallic double meander structures,” in Proc. SPIE, Vol. 7711 2010, p. 77111F.
  23. C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69(23), 3314–3317 (1992). [CrossRef] [PubMed]
  24. B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited