OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 4 — Feb. 14, 2011
  • pp: 3667–3676

Circuit-based method for synthesizing of coupled-resonators bandpass photonic crystal filters

Zuoxing Dai, Jiali Wang, and Yan Heng  »View Author Affiliations


Optics Express, Vol. 19, Issue 4, pp. 3667-3676 (2011)
http://dx.doi.org/10.1364/OE.19.003667


View Full Text Article

Enhanced HTML    Acrobat PDF (1265 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A method for synthesizing bandpass photonic crystal filters for wavelength division multiplexing (WDM) systems is presented. The proposed method permits the calculation of the physical dimensions of the crystalline structures given the desired frequency response of the filter in terms of bandwidth, in-band ripple, minimum out-of-band attenuation, and central frequency. The method, explained in detail for Chebyshev frequency responses, is equivalent circuit based. The resulting devices are very compact, have a high out-of-band attenuation, and are suitable for high density photonic integrated circuits. The validity of the proposed method is confirmed through contrasting the simulation concluded from the finite-difference time-domain (FDTD) method by the design of a third-order Chebyshev filter having a center frequency of 1THz, a flat bandwidth of 4GHz, and ripples of 0.5 dB in the passband.

© 2011 OSA

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Integrated Optics

History
Original Manuscript: November 30, 2010
Revised Manuscript: January 12, 2011
Manuscript Accepted: January 21, 2011
Published: February 10, 2011

Citation
Zuoxing Dai, Jiali Wang, and Yan Heng, "Circuit-based method for synthesizing of coupled-resonators bandpass photonic crystal filters," Opt. Express 19, 3667-3676 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-4-3667


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystal: Molding the Flow of Ligh, (Princeton Univ. Press, Princeton, 2008).
  2. M. F. Yanik, H. Altug, J. Vuckovic, and S. Fan, “Submicrometer All-Optical Digital Memory and Integration of Nanoscale Photonic Devices without Isolator,” IEEE J. Lightw. Technol. 22(10), 2316–2322 (2004). [CrossRef]
  3. M. Koshiba, “Wavelength Division Multiplexing and Demultiplexing With Photonic Crystal Waveguide Coupler,” IEEE J. Lightw. Technol. 19(12), 1970–1975 (2001). [CrossRef]
  4. M. Mekis, M. Meier, A. Dodabalapur, R. E. Slusher, and J. D. Joannopoulos, “Lasing mechanism in two dimensional photonic crystal lasers,” Appl. Phys., A Mater. Sci. Process. 69(1), 111–114 (1999). [CrossRef]
  5. M. F. Yanik, S. Fan, M. Soljacić, and J. D. Joannopoulos, “All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry,” Opt. Lett. 28(24), 2506–2508 (2003). [CrossRef] [PubMed]
  6. X. HU, Q. GONG, Y. LIU, B. CHENG, and D. ZHANG, “Fabrication of two-dimensional organic photonic crystal filter,” Appl. Phys. B 81, 779–781 (2005). [CrossRef]
  7. M. Belotti, J. F. Galisteo Lòpez, S. De Angelis, M. Galli, I. Maksymov, L. C. Andreani, D. Peyrade, and Y. Chen, “All-optical switching in 2D silicon photonic crystals with low loss waveguides and optical cavities,” Opt. Express 16(15), 11624–11636 (2008). [PubMed]
  8. H. Y. Ryu, M. Notomi, and Y. H. Lee, “High-quality-factor and small-mode-volume hexapole modes in photonic-crystal-slab nanocavities,” Appl. Phys. Lett. 83(21), 4294–4296 (2003). [CrossRef]
  9. J. C. Chen, H. A. Haus, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Optical filters from photonic band gap air bridges,” J. Lightwave Technol. 14(11), 2575–2580 (1996). [CrossRef]
  10. M. Imada, S. Noda, A. Chutinan, M. Mochizuki, and T. Tanaka, “Channel drop filter using a single defect in a 2-D photonic crystal slab waveguide,” J. Lightwave Technol. 20(5), 873–878 (2002). [CrossRef]
  11. R. Costa, A. Melloni, and M. Martinelli, “Bandpass resonant filters in photonic-crystal waveguides,” IEEE Photon. Technol. Lett. 15(3), 401–403 (2003). [CrossRef]
  12. D. Park, S. Kim, I. Park, and H. Lim, “Higher order optical resonant filters based on coupled defect resonators in photonic crystals,” J. Lightwave Technol. 23(5), 1923–1928 (2005). [CrossRef]
  13. X. C. Li, J. Xu, K. Xu, A. Q. Liu, and J. T. Lin, “A side-coupled photonic crystal filter with sidelobe suppression,” Appl. Phys., A Mater. Sci. Process. 89(2), 327–332 (2007). [CrossRef]
  14. H. A. Haus, Wave and Fields in Optoelectronics (Englewood Cliffs, NJ: Prentice-Hall, 1984).
  15. S. Fan, P. Villeneuve, J. Joannopoulos, and H. Haus, “Channel drop filters in photonic crystals,” Opt. Express 3(1), 4–11 (1998). [CrossRef] [PubMed]
  16. C. Chen, X. Li, H. Li, K. Xu, J. Wu, and J. Lin, “Bandpass filters based on phase-shifted photonic crystal waveguide gratings,” Opt. Express 15(18), 11278–11284 (2007). [CrossRef] [PubMed]
  17. K. Fasihi and S. Mohammadnejad, “Highly efficient channel-drop filter with a coupled cavity-based wavelength-selective reflection feedback,” Opt. Express 17(11), 8983–8997 (2009). [CrossRef] [PubMed]
  18. Y. Akahane, T. Asano, H. Takano, B.-S. Song, Y. Takana, and S. Noda, “Two-dimensional photonic-crystal-slab channeldrop filter with flat-top response,” Opt. Express 13(7), 2512–2530 (2005). [CrossRef] [PubMed]
  19. A. Melloni and M. Martinelli; “Synthesis of direct-coupled-resonators bandpass filters for WDM systems,” J. Lightwave Technol. 20(2), 296–303 (2002). [CrossRef]
  20. M. J. Khan, C. Manolatou, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Mode-coupling analysis of multipole symmetric resonant add/drop filters,” IEEE J. Quantum Electron. 35(10), 1451–1460 (1999). [CrossRef]
  21. J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications (John wiley & sons, INC. 2001).
  22. H. A. Haus and Y. Lai, “Theory of cascaded Quarter wave shifted distributed feedback resonators,” IEEE J. Quantum Electron. 28(1), 205–212 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited