OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 4 — Feb. 14, 2011
  • pp: 3730–3741

Phase shifting interferometry of cold atoms

Tzu-Ping Ku, Chi-Yuan Huang, Bor-Wen Shiau, and Dian-Jiun Han  »View Author Affiliations

Optics Express, Vol. 19, Issue 4, pp. 3730-3741 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1024 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a scheme to engage phase shifting interferometry on cold atomic samples and present the simulation results under several experimentally achievable conditions nowadays. This method allows far-detuning, low power probing, and is intrinsically nondestructive. This novel detection means yields image quality superior to the conventional phase contrast imaging at certain conditions and could be experimentally realized. Furthermore, the longitudinal resolution of imaging by this manner is mainly set by optical interference and can be better than the diffraction limit. This scheme also provides special advantages to diagnose the surface-trapped clouds, with which phase imaging on the fabricated wires and atoms altogether is possible as well.

© 2011 Optical Society of America

OCIS Codes
(020.7010) Atomic and molecular physics : Laser trapping
(120.4290) Instrumentation, measurement, and metrology : Nondestructive testing
(170.1650) Medical optics and biotechnology : Coherence imaging
(020.1475) Atomic and molecular physics : Bose-Einstein condensates
(100.3175) Image processing : Interferometric imaging

ToC Category:
Atomic and Molecular Physics

Original Manuscript: October 25, 2010
Revised Manuscript: January 13, 2011
Manuscript Accepted: February 8, 2011
Published: February 11, 2011

Tzu-Ping Ku, Chi-Yuan Huang, Bor-Wen Shiau, and Dian-Jiun Han, "Phase shifting interferometry of cold atoms," Opt. Express 19, 3730-3741 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. D. Turner, K. P. Weber, D. Paganin, and R. E. Scholten, "Off-resonant defocus-contrast imaging of cold atoms," Opt. Lett. 29, 232 (2004). [CrossRef] [PubMed]
  2. L. D. Turner, K. F. E. M. Domen, and R. E. Scholten, "Diffraction-contrast imaging of cold atoms," Phys. Rev. A 72, 031403 (2005). [CrossRef]
  3. D. V. Sheludko, S. C. Bell, R. Anderson, C. S. Hofmann, E. J. D. Vredenbregt, and R. E. Scholten, "State-selective imaging of cold atoms," Phys. Rev. A 77, 033401 (2008). [CrossRef]
  4. M. R. Andrews, M.-O. Mewes, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, "Direct, Nondestructive Observation of a Bose Condensate," Science 273, 84 (1996). [CrossRef] [PubMed]
  5. C. C. Bradley, C. A. Sackett, and R. G. Hulet, "Bose-Einstein Condensation of Lithium: Observation of Limited Condensate Number," Phys. Rev. Lett. 78, 985 (1997). [CrossRef]
  6. S. Kadlecek, J. Sebby, R. Newell, and T. G. Walker, "Nondestructive spatial heterodyne imaging of cold atoms," Opt. Lett. 26, 137 (2001). [CrossRef]
  7. M. Takeda, "Spatial-carrier fringes-pattern analysis and its applications to precision interferometry and profilometry: An overview," Ind. Metrol. 1, 79 (1990). [CrossRef]
  8. L. D. Turner, "Holographic Imaging of Cold Atoms," Ph.D. dissertation, University of Melbourne, Australia, 2004.
  9. K. Nelson, X. Li, and D. Weiss, "Imaging single atoms in a three-dimensional array," Nat. Phys. 3, 556 (2007). [CrossRef]
  10. W. S. Bakr, J. I. Gillen, A. Peng, S. Folling, and M. Greiner, "A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice," Nature 462, 74 (2009). [CrossRef] [PubMed]
  11. M. Karski, L. Forster, J. M. Choi, W. Alt, A. Widera, and D. Meschede, "Nearest-Neighbor Detection of Atoms in a 1D Optical Lattice by Fluorescence Imaging," Phys. Rev. Lett. 102, 053001 (2009). [CrossRef] [PubMed]
  12. H. Iwai, C. Fang-Yen, G. Popescu, A. Wax, K. Badizadegan, R. R. Dasari, and M. S. Feld, "Quantitative phase imaging using actively stabilized phase-shifting low-coherence interferometry," Opt. Lett. 29, 2399 (2004). [CrossRef] [PubMed]
  13. J. E. Greivenkamp, and J. H. Bruning, "Phase Shifting Interferometry," in Optical Shop Testing, ed. D. Malacara, (J. Wiley, 1992) pp. 501-598.
  14. M. Vannoni, M. Trivi, and G. Molesini, "Phase-shift interferometry with a digital photo camera," Eur. J. Phys. 28, 117 (2007). [CrossRef]
  15. Y. Bitou, H. Inaba, F.-L. Hong, T. Takatsuji, and A. Onae, "Phase-shifting interferometry with equal phase steps by use of a frequency-tunable diode laser and a Fabry-Perot cavity," Appl. Opt. 44, 5403 (2005). [CrossRef] [PubMed]
  16. X. F. Meng, L. Z. Cai, X. F. Xu, X. L. Yang, X. X. Shen, G. Y. Dong, and Y. R. Wang, "Two-step phase-shifting interferometry and its application in image encryption," Opt. Lett. 31, 1414 (2006). [CrossRef] [PubMed]
  17. B.-W. Shianu, T.-P. Ku, and D.-J. Han, "Real-Time Phase Difference Control of Optical Beams Using a MachVZehnder Interferometer," J. Phys. Soc. Jpn. 79, 034302 (2010). [CrossRef]
  18. EEV 512 × 1024 CCD (Princeton Instruments) allows full-frame transfer and readout in 273 ms.
  19. M. T. DePue, S. L. Winoto, D. J. Han, and D. S. Weiss, "Transient compression of a MOT and high density fluorescent imaging of optically thick clouds of atoms," Opt. Commun. 180, 73 (2000). [CrossRef]
  20. G.-W. Li, S.-J. Huang, H.-S. Wu, S. Fang, D.-S. Hong, T. Mohamed, and D.-J. Han, "A Michelson Interferometer for Relative Phase Locking of Optical Beams," J. Phys. Soc. Jpn. 77, 024301 (2008). [CrossRef]
  21. R. Folman, P. Kruger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, "Controlling Cold Atoms using Nanofabricated Surfaces: Atom Chips," Phys. Rev. Lett. 84, 4749 (2000). [CrossRef] [PubMed]
  22. J. I. Gillen, W. S. Bakr, A. Peng, P. Unterwaditzer, S. Folling, and M. Greiner, "Two-dimensional quantum gas in a hybrid surface trap," Phys. Rev. A 80, 021602 (2009). [CrossRef]
  23. J. W. Goodman, Introduction to Fourier Optics, 2nd ed., (McGraw-Hill, 1996).
  24. E. Hecht, Optics, 4th ed., (Addison Wesley, 2002).
  25. D. A. Steck, "Rubidium 87 D Line Data," available online at http://steck.us/alkalidata (revision 2.0.1, 2 May 2008).
  26. M. R. Matthews, "Two-component Bose-Einstein Condensation," Ph.D. dissertation, University of Colorado, 1999.
  27. F. L. Pedrotti, and L. S. Pedrotti, Introduction to Optics, 2nd ed., (Prentice-Hall, 1993).
  28. J. Fortagh, and C. Zimmermann, "Magnetic microtraps for ultracold atoms," Rev. Mod. Phys. 79, 235 (2007). [CrossRef]
  29. A. S. Zibrov, M. D. Lukin, L. Hollberg, D. E. Nikonov, M. O. Scully, H. G. Robinson, and V. L. Velichansky, "Experimental Demonstration of Enhanced Index of Refraction via Quantum Coherence in Rb," Phys. Rev. Lett. 76, 3935 (1996). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited