OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 4 — Feb. 14, 2011
  • pp: 3788–3798

40 Gb/s wavelength conversion via four-wave mixing in a quantum-dot semiconductor optical amplifier

Christian Meuer, Carsten Schmidt-Langhorst, Holger Schmeckebier, Gerrit Fiol, Dejan Arsenijević, Colja Schubert, and Dieter Bimberg  »View Author Affiliations


Optics Express, Vol. 19, Issue 4, pp. 3788-3798 (2011)
http://dx.doi.org/10.1364/OE.19.003788


View Full Text Article

Enhanced HTML    Acrobat PDF (1573 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The static and dynamic characteristics of degenerate four-wave mixing in a quantum dot semiconductor optical amplifier are investigated. A high chip conversion efficiency of 1.5 dB at 0.3 nm detuning, a low (< 5 dB) asymmetry of up and down conversion and a spectral conversion range of 15 nm with an optical signal-to-noise ratio above 20 dB is observed. The comparison of pumping near the gain peak and at the edge of the gain spectrum reveals the optical signal-to-noise ratio as the crucial parameter for error-free wavelength conversion. Small-signal bandwidths well beyond 40 GHz and 40 Gb/s error-free 5 nm wavelength down conversion with penalties below 1 dB are presented. Due to the optical signal-to-noise ratio limitation, wavelength up conversion is error-free at a pump wavelength of 1311 nm with a penalty of 2.5 dB, whereas an error floor is observed for pumping at 1291 nm. A dual pump configuration is demonstrated, to extend the wavelength conversion range enabling 15.4 nm error-free wavelength up conversion with 3.5 dB penalty caused by the additional saturation of the second pump. This is the first time that 40 Gb/s error-free wavelength conversion via four-wave mixing in quantum-dot semiconductor optical amplifiers is presented.

© 2011 OSA

OCIS Codes
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(250.5980) Optoelectronics : Semiconductor optical amplifiers

ToC Category:
Nonlinear Optics

History
Original Manuscript: December 20, 2010
Revised Manuscript: February 2, 2011
Manuscript Accepted: February 2, 2011
Published: February 11, 2011

Citation
Christian Meuer, Carsten Schmidt-Langhorst, Holger Schmeckebier, Gerrit Fiol, Dejan Arsenijević, Colja Schubert, and Dieter Bimberg, "40 Gb/s wavelength conversion via four-wave mixing in a quantum-dot semiconductor optical amplifier," Opt. Express 19, 3788-3798 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-4-3788


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14(6), 955–966 (1996). [CrossRef]
  2. D. Bimberg, M. Kuntz, and M. Laemmlin, “Quantum dot photonic devices for lightwave communication,” Microelectron. J. 36(3-6), 175–179 (2005). [CrossRef]
  3. D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures (John Wiley & Sons Ltd, Chichester, 1999).
  4. D. Bimberg, M. Grundmann, N. N. Ledentsov, S. S. Ruvimov, P. Werner, U. Richter, J. Heydenreich, V. M. Ustinov, P. S. Kopev, and Z. I. Alferov, “Self-organization processes in MBE-grown quantum dot structures,” Thin Solid Films 267(1-2), 32–36 (1995). [CrossRef]
  5. A. V. Uskov, E. P. O'Reilly, M. Laemmlin, N. N. Ledentsov, and D. Bimberg, “On gain saturation in quantum dot semiconductor optical amplifiers,” Opt. Commun. 248(1-3), 211–219 (2005). [CrossRef]
  6. T. Vallaitis, C. Koos, R. Bonk, W. Freude, M. Laemmlin, C. Meuer, D. Bimberg, and J. Leuthold, “Slow and fast dynamics of gain and phase in a quantum dot semiconductor optical amplifier,” Opt. Express 16(1), 170–178 (2008). [CrossRef] [PubMed]
  7. I. O'Driscoll, T. Piwonski, C. F. Schleussner, J. Houlihan, G. Huyet, and R. J. Manning, “Electron and hole dynamics of InAs/GaAs quantum dot semiconductor optical amplifiers,” Appl. Phys. Lett. 91(26), 263506 (2007). [CrossRef]
  8. M. Sugawara, N. Hatori, M. Ishida, H. Ebe, Y. Arakawa, T. Akiyama, K. Otsubo, Y. Yamamoto, and Y. Nakata, “Recent progress in self-assembled quantum-dot optical devices for optical telecommunication: temperature-insensitive 10 Gb s−1 directly modulated lasers and 40 Gb s−1 signal-regenerative amplifiers,” J. Phys. D Appl. Phys. 38(13), 2126–2134 (2005). [CrossRef]
  9. G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, and K. Kitayama, “Regenerative Amplification by Using Self-Phase Modulation in a Quantum-Dot SOA,” IEEE Photon. Technol. Lett. 22(7), 492–494 (2010). [CrossRef]
  10. R. Bonk, C. Meuer, T. Vallaitis, S. Sygletos, P. Vorreau, S. Ben-Ezra, S. Tsadka, A. Kovsh, I. Krestnikov, M. Laemmlin, D. Bimberg, W. Freude, and J. Leuthold, “Single and Multiple Channel Operation Dynamics of Linear Quantum-Dot Semiconductor Optical Amplifier,” in European Conference on Optical Communications (ECOC 2008)(Brussels, Belgium, 2008), p. Th.1.C.2.
  11. C. Schmidt-Langhorst, C. Meuer, A. Galperin, H. Schmeckebier, R. Ludwig, D. Puris, D. Bimberg, K. Petermann, and C. Schubert, “80 Gb/s Multi-Wavelength Booster Amplification in an InGaAs/GaAs Quantum-Dot Semiconductor Optical Amplifier,” in European Conference on Optical Communication (ECOC 2010)(Torino, Italy, 2010), p. Mo.1.F.6.
  12. G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, and K. Kitayama, “Regenerative Amplification in a Quantum Dot SOA ” in Optical Fiber Communication Conference (OFC 2010)(San Diego, CA, USA, 2010), p. OMT2.
  13. T. Akiyama, N. Hatori, Y. Nakata, H. Ebe, and M. Sugawara, “Pattern-effect-free amplification and cross-gain modulation achieved by using ultrafast gain nonlinearity in quantum-dot semiconductor optical amplifiers,” Phys. Status Solidi, B Basic Res. 238(2), 301–304 (2003). [CrossRef]
  14. G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, and K. Kitayama, “80 Gb/s Multicast Wavelength Conversion by XGM in a QD-SOA,” in European Conference on Optical Communication (ECOC2010)(Torino, Italy, 2010), p. Mo.2.A.3.
  15. G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, and K. Kitayama, “160 Gb/s cross gain modulation in quantum dot SOA at 1550 nm,” in European Conference on Optical Communication (ECOC 2009)(Vienna, Austria, 2009), p. PDP 1.4.
  16. A. E. Kelly, A. D. Ellis, D. Nesset, R. Kashyap, and D. G. Moodie, “100Gbit/s wavelength conversion using FWM in an MQW semiconductor optical amplifier,” Electron. Lett. 34(20), 1955–1956 (1998). [CrossRef]
  17. U. Feiste, R. Ludwig, C. Schmidt, E. Dietrich, S. Diez, H. Ehrke, E. Patzak, H. G. Weber, and T. Merker, “80-Gb/s transmission over 106-km standard-fiber using optical phase conjugation in a Sagnac-interferometer,” IEEE Photon. Technol. Lett. 11(8), 1063–1065 (1999). [CrossRef]
  18. S. Diez, C. Schubert, H.-J. Ehrke, U. Feiste, R. Ludwig, E. Patzak, C. Schmidt, and H. G. Weber, “160 Gb/s all-optical demultiplexer using a hybrid gain-transparent SOA Mach-Zehnder-Interferometer,” Electron. Lett. 36(17), 1484 (2000). [CrossRef]
  19. S. L. Jansen, M. Heid, S. Spalter, E. Meissner, C. J. Weiske, A. Schopflin, D. Khoe, and H. de Waardt, “Demultiplexing 160 Gbit/s OTDM signal to 40 Gbit/s by FWM in SOA,” Electron. Lett. 38(17), 978–980 (2002). [CrossRef]
  20. T. Akiyama, H. Kuwatsuka, N. Hatori, Y. Nakata, H. Ebe, and M. Sugawara, “Symmetric Highly Efficient (~0 dB) Wavelength Conversion Based on Four-Wave Mixing in Quantum Dot Optical Amplifiers,” IEEE Photon. Technol. Lett. 14(8), 1139–1141 (2002). [CrossRef]
  21. A. Capua, S. O’Duill, V. Mikhelashvili, G. Eisenstein, J. P. Reithmaier, A. Somers, and A. Forchel, “Cross talk free multi channel processing of 10 Gbit/s data via four wave mixing in a 1550 nm InAs/InP quantum dash amplifier,” Opt. Express 16(23), 19072–19077 (2008). [CrossRef]
  22. D. Nielsen, S. L. Chuang, N. J. Kim, D. Lee, S. H. Pyun, and W. G. Jeong, “160 GHz wavelength conversion using four-wave mixing in quantum dots,” in Conference on Lasers and Electro-Optics (CLEO)(Baltimore, MD, USA, 2009).
  23. D. Bimberg, C. Meuer, M. Laemmlin, S. Liebich, J. Kim, A. R. Kovsh, I. Krestnikov, and G. Eisenstein, “Nonlinear properties of quantum dot semiconductor optical amplifiers at 1.3 µm,” Chin. Opt. Lett. 6, 724–726 (2008). [CrossRef]
  24. A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil'ev, E. A. Semenova, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3 µm range with enhanced optical gain,” J. Cryst. Growth 251(1-4), 729–736 (2003). [CrossRef]
  25. C. Meuer, H. Schmeckebier, G. Fiol, D. Arsenijevic, J. Kim, G. Eisenstein, and D. Bimberg, “Cross-Gain Modulation and Four-Wave Mixing for Wavelength Conversion in undoped and p-doped 1.3 µm Quantum Dot Semiconductor Optical Amplifiers,” IEEE Photon. 2(2), 141–151 (2010). [CrossRef]
  26. A. Bilenca, R. Alizon, V. Mikhelashhvili, D. Dahan, G. Eisenstein, R. Schwertberger, D. Gold, J. P. Reithmaier, and A. Forchel, “Broad-band wavelength conversion based on cross-gain modulation and four-wave mixing in InAs-InP quantum-dash semiconductor optical amplifiers operating at 1550 nm,” IEEE Photon. Technol. Lett. 15(4), 563–565 (2003). [CrossRef]
  27. D. Nielsen, S. L. Chuang, N. J. Kim, D. Lee, S. H. Pyun, W. G. Jeong, C. Y. Chen, and T. S. Lay, “High-speed wavelength conversion in quantum dot and quantum well semiconductor optical amplifiers,” Appl. Phys. Lett. 92(21), 211101 (2008). [CrossRef]
  28. K. Kikuchi, M. Kakui, C. E. Zah, and T. P. Lee, “Observation of Highly Nondegenerate 4-Wave-Mixing in 1.5 µm Traveling-Wave Semiconductor Optical Amplifiers and Estimation of Nonlinear Gain Coefficient,” IEEE J. Quantum Electron. 28(1), 151–156 (1992). [CrossRef]
  29. A. E. Kelly, D. D. Marcenac, and D. Nesset, “40Gbit/s wavelength conversion over 24.6nm using FWM in a semiconductor optical amplifier with an optimised MQW active region,” Electron. Lett. 33(25), 2123–2124 (1997). [CrossRef]
  30. G. Grosskopf, R. Ludwig, and H. G. Weber, “140 Mbit/s DPSK Transmission Using an All-Optical Frequency-Converter with a 4000 GHz Conversion Range,” Electron. Lett. 24(17), 1106–1107 (1988). [CrossRef]
  31. N. Schunk, G. Groβkopt, R. Ludwig, R. Schnabel, and H. G. Weber, “Frequency-Conversion by Nearly-Degenerate 4-Wave-Mixing in Traveling-Wave Semiconductor-Laser Amplifiers,” IEE Proc. Optoelectron. 137, 209–214 (1990). [CrossRef]
  32. G. Contestabile, F. Martelli, A. Mecozzi, L. Graziani, A. D'Ottavi, P. Spano, G. Guekos, R. Dall'Ara, and J. Eckner, “Efficiency flattening and equalization of frequency up- and down-conversion using four-wave mixing in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 10(10), 1398–1400 (1998). [CrossRef]
  33. T. J. Morgan, J. P. R. Lacey, and R. S. Tucker, “Widely tunable four-wave mixing in semiconductor optical amplifiers with constant conversion efficiency,” IEEE Photon. Technol. Lett. 10(10), 1401–1403 (1998). [CrossRef]
  34. I. Tomkos, I. Zacharopoulos, D. Syvridis, T. Sphicopoulos, and E. Roditi, “Improved performance of a wavelength converter based on dual pump four-wave mixing in a bulk semiconductor optical amplifier,” Appl. Phys. Lett. 72(20), 2499–2501 (1998). [CrossRef]
  35. S. Diez, C. Schmidt, R. Ludwig, H. G. Weber, K. Obermann, S. Kindt, I. Koltchanov, and K. Petermann, “Four-wave mixing in semiconductor optical amplifiers for frequency conversion and fast optical switching,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1131–1145 (1997). [CrossRef]
  36. P. Borri, W. Langbein, J. M. Hvam, F. Heinrichsdorff, H.-M. Mao, and D. Bimberg, “Spectral Hole-Burning and Carrier-Heating Dynamics in InGaAs Quantum-Dot Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 6(3), 544–551 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited