OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 5 — Feb. 28, 2011
  • pp: 3835–3842

Three-dimensional parallel particle manipulation and tracking by integrating holographic optical tweezers and engineered point spread functions

Donald B. Conkey, Rahul P. Trivedi, Sri Rama Prasanna Pavani, Ivan I. Smalyukh, and Rafael Piestun  »View Author Affiliations

Optics Express, Vol. 19, Issue 5, pp. 3835-3842 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1189 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate an integrated holographic optical tweezers system with double-helix point spread function (DH-PSF) imaging for high precision three-dimensional multi-particle tracking. The tweezers system allows for the creation and control of multiple optical traps in three-dimensions, while the DH-PSF allows for high precision, 3D, multiple-particle tracking in a wide field. The integrated system is suitable for particles emitting/scattering either coherent or incoherent light and is easily adaptable to existing holographic tweezers systems. We demonstrate simultaneous tracking of multiple micro-manipulated particles and perform quantitative estimation of the lateral and axial forces in an optical trap by measuring the fluid drag force exerted on the particles. The system is thus capable of unveiling complex 3D force landscapes that make it suitable for quantitative studies of interactions in colloidal systems, biological materials, and a variety of soft matter systems.

© 2011 OSA

OCIS Codes
(110.6880) Imaging systems : Three-dimensional image acquisition
(150.5670) Machine vision : Range finding
(110.1758) Imaging systems : Computational imaging
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: October 20, 2010
Revised Manuscript: January 27, 2011
Manuscript Accepted: January 27, 2011
Published: February 14, 2011

Virtual Issues
Vol. 6, Iss. 3 Virtual Journal for Biomedical Optics

Donald B. Conkey, Rahul P. Trivedi, Sri Rama Prasanna Pavani, Ivan I. Smalyukh, and Rafael Piestun, "Three-dimensional parallel particle manipulation and tracking by integrating holographic optical tweezers and engineered point spread functions," Opt. Express 19, 3835-3842 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970). [CrossRef]
  2. K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994). [CrossRef] [PubMed]
  3. C. N. Cohen-Tannoudji and W. D. Phillips, “New Mechanisms for Laser Cooling,” Phys. Today 43(10), 33–40 (1990). [CrossRef]
  4. S. Chu, “Laser Trapping of Neutral Particles,” Sci. Am. 266(2), 71–76 (1992). [CrossRef]
  5. J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer generated holograms,” Opt. Commun. 185(1-3), 77–82 (2000). [CrossRef]
  6. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003). [CrossRef] [PubMed]
  7. A. Pralle, M. Prummer, E. L. Florin, E. H. K. Stelzer, and J. K. H. Hörber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Tech. 44(5), 378–386 (1999). [CrossRef] [PubMed]
  8. T. T. Perkins, “Optical traps for single molecule biophysics: a primer,” Laser Photonics Rev. 3(1-2), 203–220 (2009). [CrossRef]
  9. S. H. Lee and D. G. Grier, “Holographic microscopy of holographically trapped three-dimensional structures,” Opt. Express 15(4), 1505–1512 (2007). [CrossRef] [PubMed]
  10. J. S. Dam, I. R. Perch-Nielsen, D. Palima, and J. Glückstad, “Three-dimensional imaging in three-dimensional optical multi-beam micromanipulation,” Opt. Express 16(10), 7244–7250 (2008). [CrossRef] [PubMed]
  11. R. Bowman, G. Gibson, and M. Padgett, “Particle tracking stereomicroscopy in optical tweezers: control of trap shape,” Opt. Express 18(11), 11785–11790 (2010). [CrossRef] [PubMed]
  12. A. Greengard, Y. Y. Schechner, and R. Piestun, “Depth from diffracted rotation,” Opt. Lett. 31(2), 181–183 (2006). [CrossRef] [PubMed]
  13. S. R. P. Pavani and R. Piestun, “Three dimensional tracking of fluorescent microparticles using a photon-limited double-helix response system,” Opt. Express 16(26), 22048–22057 (2008). [CrossRef] [PubMed]
  14. S. R. P. Pavani, A. Greengard, and R. Piestun, “Three-dimensional localization with nanometer accuracy using a detector-limited double-helix point spread function system,” Appl. Phys. Lett. 95(2), 021103 (2009). [CrossRef]
  15. S. R. P. Pavani and R. Piestun, “3D microscopy with a double-helix point spread function,” Proc. SPIE 7184, 718401 (2009).
  16. S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 2995–2999 (2009). [CrossRef] [PubMed]
  17. S. R. P. Pavani, J. G. DeLuca, and R. Piestun, “Polarization sensitive, three-dimensional, single-molecule imaging of cells with a double-helix system,” Opt. Express 17(22), 19644–19655 (2009). [CrossRef] [PubMed]
  18. S. Quirin, S. R. P. Pavani, and R. Piestun, “Pattern Matching Estimator for Precise 3-D Particle Localization with Engineered Point Spread Functions,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2010), paper DMC8.
  19. G. Grover, S. R. Pavani, and R. Piestun, “Performance limits on three-dimensional particle localization in photon-limited microscopy,” Opt. Lett. 35(19), 3306–3308 (2010). [CrossRef] [PubMed]
  20. M. A. Thompson, M. D. Lew, M. Badieirostami, and W. E. Moerner, “Localizing and tracking single nanoscale emitters in three dimensions with high spatiotemporal resolution using a double-helix point spread function,” Nano Lett. 10, 211–218 (2010). [CrossRef]
  21. K. Schutze, I. Becker, K. F. Becker, S. Thalhammer, R. Stark, W. M. Heckl, M. Bohm, and H. Posl, “Cut out or poke in - the key to the world of single genes: Laser micromanipulation as a valuable tool on the look-out for the origin of disease,” Genet. Anal. Biomol. Eng. 14, 1–8 (1997). [CrossRef]
  22. K. Schütze, H. Pösl, and G. Lahr, “Laser micromanipulation systems as universal tools in cellular and molecular biology and in medicine,” Cell. Mol. Biol. (Noisy-le-grand) 44(5), 735–746 (1998).
  23. P. T. Korda, G. C. Spalding, and D. G. Grier, “Evolution of a colloidal critical state in an optical pinning potential landscape,” Phys. Rev. B 66(2), 024504 (2002). [CrossRef]
  24. D. G. Grier, “Optical tweezers in colloid and interface science,” Curr. Opin. Colloid Interface Sci. 2(3), 264–270 (1997). [CrossRef]
  25. S. Anand, R. Trivedi, G. Stockdale, and I. Smalyukh, “Non-contact optical control of multiple particles and defects using holographic optical trapping with phase-only liquid crystal spatial light modulator,” Proc. SPIE 7232, 723208 (2009). [CrossRef]
  26. S. Keen, J. Leach, G. Gibson, and M. J. Padgett, “Comparison of a high-speed camera and a quadrant detector for measuring displacements in optical tweezers,” J. Opt. A, Pure Appl. Opt. 9(8), S264–S266 (2007). [CrossRef]
  27. I. I. Smalyukh, A. V. Kachynski, A. N. Kuzmin, and P. N. Prasad, “Laser trapping in anisoptropic fluids and polarization-controlled particle dynamics,” Proc. Natl. Acad. Sci. U.S.A. 103(48), 18048–18053 (2006). [CrossRef] [PubMed]
  28. S. Quirin, G. Grover, and R. Piestun, “Double-Helix PSF Microscopy with a Phase Mask for Efficient Photon Collection,” to appear in Novel Techniques in Microscopy, OSA Technical Digest (CD) (Optical Society of America, 2011).
  29. Q. Liu, Y. Cui, D. Gardner, X. Li, S. He, and I. I. Smalyukh, “Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications,” Nano Lett. 10(4), 1347–1353 (2010). [CrossRef] [PubMed]
  30. C. P. Lapointe, T. G. Mason, and I. I. Smalyukh, “Shape-controlled colloidal interactions in nematic liquid crystals,” Science 326(5956), 1083–1086 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited