OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 5 — Feb. 28, 2011
  • pp: 3902–3907

Plasmonic resonance of whispering gallery modes in an Au cylinder

Xining Zhang, Zhe Ma, Huakang Yu, Xin Guo, Yaoguang Ma, and Limin Tong  »View Author Affiliations


Optics Express, Vol. 19, Issue 5, pp. 3902-3907 (2011)
http://dx.doi.org/10.1364/OE.19.003902


View Full Text Article

Enhanced HTML    Acrobat PDF (960 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate whispering gallery (WG) resonance of surface plasmon polaritons (SPPs) in a 2-dimensional confined Au cylinder by self interference. Despite the leakage of SPPs along the axis of the cylinder, Q factors of 375 are obtained in a cylinder with diameter of 30 μm. The coupling-angle-dependence of the WG resonance is also investigated. Our results open opportunities for a new category of plasmonic cavities with 2-dimensional confinement, and this may be applied to a variety of simple and natural metallic micro or nanostructures.

© 2011 OSA

OCIS Codes
(160.3900) Materials : Metals
(240.6680) Optics at surfaces : Surface plasmons
(140.3945) Lasers and laser optics : Microcavities
(130.3990) Integrated optics : Micro-optical devices

ToC Category:
Optics at Surfaces

History
Original Manuscript: November 30, 2010
Revised Manuscript: January 27, 2011
Manuscript Accepted: January 28, 2011
Published: February 14, 2011

Citation
Xining Zhang, Zhe Ma, Huakang Yu, Xin Guo, Yaoguang Ma, and Limin Tong, "Plasmonic resonance of whispering gallery modes in an Au cylinder," Opt. Express 19, 3902-3907 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-5-3902


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  2. B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009). [CrossRef] [PubMed]
  3. R. Perahia, T. P. M. Alegre, A. H. Safavi-Naeini, and O. Painter, “Surface-plasmon mode hybridization in subwavelength microdisk lasers,” Appl. Phys. Lett. 95(20), 201114 (2009). [CrossRef]
  4. M. Kuttge, F. J. García de Abajo, and A. Polman, “Ultrasmall mode volume plasmonic nanodisk resonators,” Nano Lett. 10(5), 1537–1541 (2010). [CrossRef]
  5. M. W. Kim, Y. H. Chen, J. Moore, Y. K. Wu, L. J. Guo, P. Bhattacharya, and P. C. Ku, “Subwavelength surface plasmon optical cavity—scaling, amplification, and coherence,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1521–1528 (2009). [CrossRef]
  6. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006). [CrossRef] [PubMed]
  7. E. J. R. Vesseur, F. J. García de Abajo, and A. Polman, “Modal decomposition of surface-plasmon whispering gallery resonators,” Nano Lett. 9(9), 3147–3150 (2009). [CrossRef] [PubMed]
  8. X. Guo, M. Qiu, J. M. Bao, B. J. Wiley, Q. Yang, X. N. Zhang, Y. G. Ma, H. K. Yu, and L. M. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9(12), 4515–4519 (2009). [CrossRef] [PubMed]
  9. Y. F. Xiao, B. B. Li, X. Jiang, X. Y. Hu, Y. Li, and Q. H. Gong, “High quality factor, small mode volume, ring-type plasmonic microresonator on a silver chip,” J. Phys. At. Mol. Opt. Phys. 43(3), 035402 (2010). [CrossRef]
  10. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005). [CrossRef] [PubMed]
  11. H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett. 96(9), 097401 (2006). [CrossRef] [PubMed]
  12. J.-C. Weeber, A. Bouhelier, G. Colas des Francs, L. Markey, and A. Dereux, “Submicrometer in-plane integrated surface plasmon cavities,” Nano Lett. 7(5), 1352–1359 (2007). [CrossRef] [PubMed]
  13. M. Allione, V. V. Temnov, Y. Fedutik, U. Woggon, and M. V. Artemyev, “Surface Plasmon Mediated Interference Phenomena in Low-Q Silver Nanowire Cavities,” Nano Lett. 8(1), 31–35 (2008). [CrossRef]
  14. V. J. Sorger, R. F. Oulton, J. Yao, G. Bartal, and X. Zhang, “Plasmonic Fabry-Pérot nanocavity,” Nano Lett. 9(10), 3489–3493 (2009). [CrossRef] [PubMed]
  15. M. K. Seo, S. H. Kwon, H. S. Ee, and H. G. Park, “Full three-dimensional subwavelength high-Q surface-plasmon-polariton cavity,” Nano Lett. 9(12), 4078–4082 (2009). [CrossRef] [PubMed]
  16. J. R. Arias-González and M. Nieto-Vesperinas, “Resonant near-field eigenmodes of nanocylinders on flat surfaces under both homogeneous and inhomogeneous lightwave excitation,” J. Opt. Soc. Am. A 18(3), 657 (2001). [CrossRef]
  17. D. Amarie, T. D. Onuta, R. A. Potyrailo, and B. Dragnea, “Submicrometer cavity surface plasmon sensors,” J. Phys. Chem. B 109(32), 15515–15519 (2005). [CrossRef]
  18. M. Bora, B. J. Fasenfest, E. M. Behymer, A. S.-P. Chang, H. T. Nguyen, J. A. Britten, C. C. Larson, J. W. Chan, R. R. Miles, and T. C. Bond, “Plasmon resonant cavities in vertical nanowire arrays,” Nano Lett. 10(8), 2832–2837 (2010). [CrossRef] [PubMed]
  19. C. G. Biris and N. C. Panoiu, “Nonlinear pulsed excitation of high-Q optical modes of plasmonic nanocavities,” Opt. Express 18(16), 17165–17179 (2010), http://www.opticsinfobase.org/abstract.cfm?uri=oe-18-16-17165 . [CrossRef] [PubMed]
  20. C. A. Pfeiffer, E. N. Economou, and K. L. Ngai, “Surface polaritons in circularly cylindrical interface: surface plasmons,” Phys. Rev. B 10(8), 3038–3051 (1974). [CrossRef]
  21. S. A. Maier, P. E. Barclay, T. J. Johnson, M. D. Friedman, and O. Painter, “Low-loss fiber accessible plasmon waveguide for planar energy guiding and sensing,” Appl. Phys. Lett. 84(20), 3990 (2004). [CrossRef]
  22. C. H. Dong, X. F. Ren, R. Yang, J. Y. Duan, J. G. Guan, G. C. Guo, and G. P. Guo, “Coupling of light from an optical fiber taper into silver nanowires,” Appl. Phys. Lett. 95(22), 221109 (2009). [CrossRef]
  23. P. Dawson, J. P. Goudonnet, and F. de. Fornel, “Imaging of surface plasmon propagation and edge interaction using a photon scanning tunneling microscope,” Phys. Rev. Lett. 72(18), 2927–2930 (1994). [CrossRef] [PubMed]
  24. M. Sumetsky, “Mode localization and the Q-factor of a cylindrical microresonator,” Opt. Lett. 35(14), 2385–2387 (2010). [CrossRef] [PubMed]
  25. B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77(9), 1889–1892 (1996). [CrossRef] [PubMed]
  26. A. Bouhelier and G. P. Wiederrecht, “Surface plasmon rainbow jets,” Opt. Lett. 30(8), 884–886 (2005). [CrossRef] [PubMed]
  27. J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, “Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper,” Opt. Lett. 22(15), 1129–1131 (1997). [CrossRef] [PubMed]
  28. V. A. Sychugov, V. P. Torchigin, and M. Y. Tsvetkov, “Whispering-gallery waves in optical fibres,” Quantum Electron. 32(8), 738–742 (2002). [CrossRef]
  29. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1998).
  30. A. W. Poon, R. K. Chang, and J. A. Lock, “Spiral morphology-dependent resonances in an optical fiber: effects of fiber tilt and focused Gaussian beam illumination,” Opt. Lett. 23(14), 1105–1107 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited