OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 5 — Feb. 28, 2011
  • pp: 3962–3972

Terahertz electromagnetic crystal waveguide fabricated by polymer jetting rapid prototyping

Ziran Wu, Wei-Ren Ng, Michael E. Gehm, and Hao Xin  »View Author Affiliations


Optics Express, Vol. 19, Issue 5, pp. 3962-3972 (2011)
http://dx.doi.org/10.1364/OE.19.003962


View Full Text Article

Enhanced HTML    Acrobat PDF (1083 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An all-dielectric THz waveguide has been designed, fabricated and characterized. The design is based on a hollow-core electromagnetic crystal waveguide, and the fabrication is implemented via polymer-jetting rapid prototyping. Measurements of the waveguide power loss factor show good agreement with simulation. As an initial example, a waveguide with propagation loss of 0.03 dB/mm at 105 GHz is demonstrated.

© 2011 OSA

OCIS Codes
(220.4000) Optical design and fabrication : Microstructure fabrication
(260.3090) Physical optics : Infrared, far
(050.5298) Diffraction and gratings : Photonic crystals
(050.6875) Diffraction and gratings : Three-dimensional fabrication
(130.5460) Integrated optics : Polymer waveguides

ToC Category:
Photonic Crystals

History
Original Manuscript: November 2, 2010
Revised Manuscript: February 2, 2011
Manuscript Accepted: February 2, 2011
Published: February 15, 2011

Citation
Ziran Wu, Wei-Ren Ng, Michael E. Gehm, and Hao Xin, "Terahertz electromagnetic crystal waveguide fabricated by polymer jetting rapid prototyping," Opt. Express 19, 3962-3972 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-5-3962


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. H. Siegel, “Terahertz Technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002). [CrossRef]
  2. S. Atakaramians, S. V Afshar, B. M. Fischer, D. Abbott, and T. M. Monro, “Porous fibers: a novel approach to low loss THz waveguides,” Opt. Express 16(12), 8845–8854 (2008). [CrossRef] [PubMed]
  3. C. D. Nordquist, M. C. Wanke, A. M. Rowen, C. L. Arrington, M. Lee, and A. D. Grine, “Design, fabrication, and characterization of metal micromachined rectangular waveguides at 3 THz,” in IEEE AP-S Int. Symp. (San Diego, CA, 2008), pp. 1–4.
  4. T. Ito, Y. Matsuura, M. Miyagi, H. Minamide, and H. Ito, “Flexible Terahertz fiber optics with low bend-induced losses,” J. Opt. Soc. Am. B 24(5), 1230–1235 (2007). [CrossRef]
  5. R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett. 26(11), 846–848 (2001). [CrossRef]
  6. K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004). [CrossRef] [PubMed]
  7. T.-I. Jeon, J. Zhang, and K. W. Goossen, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86(16), 161904 1–3 (2005). [CrossRef]
  8. T.-I. Jeon and D. Grischkowsky, “Direct optoelectronic generation and detection of sub-ps-electrical pulses on sub-mm-coaxial transmission lines,” Appl. Phys. Lett. 85(25), 6092–6094 (2004). [CrossRef]
  9. L.-J. Chen, H.-W. Chen, T.-F. Kao, J.-Y. Lu, and C.-K. Sun, “Low-loss subwavelength plastic fiber for Terahertz waveguiding,” Opt. Lett. 31(3), 308–310 (2006). [CrossRef] [PubMed]
  10. A. Dupuis, J.-F. Allard, D. Morris, K. Stoeffler, C. Dubois, and M. Skorobogatiy, “Fabrication and THz loss measurements of porous subwavelength fibers using a directional coupler method,” Opt. Express 17(10), 8012–8028 (2009). [CrossRef] [PubMed]
  11. S. Atakaramians, S. V. Afshar, H. Ebendorff-Heidepriem, M. Nagel, B. M. Fischer, D. Abbott, and T. M. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Express 17(16), 14053–15062 (2009). [CrossRef] [PubMed]
  12. M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as Terahertz waveguide,” Jpn. J. Appl. Phys. 43(2B2B), L317-L319 (2004). [CrossRef]
  13. K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. M. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009). [CrossRef] [PubMed]
  14. J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92(6), 064105 1–3 (2008).
  15. M. Skorobogaity and A. Dupuis, “Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance,” Appl. Phys. Lett. 90(11), 1135141–1135143 (2007).
  16. W. R. McGrath, C. W. Walker, M. Yap, and Y.-C. Tai, “Silicon micromachined waveguides for millimeter-wave and submillimeter-wave frequencies,” IEEE Microwave Guided Wave Lett. 3(3), 61–63 (1993).
  17. J. W. Digby, C. E. McIntosh, G. M. Parkhurst, and S. R. Davies, “Fabrication and characterization of micromachined rectagular components for use at millimeter and tetrahertz frequencies,” IEEE Trans. Microw. Theory Tech. 48(8), 1293–1302 (2000). [CrossRef]
  18. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic crystals: Molding the flow of Light, 2nd ed. (Princeton University Press, Princeton, NJ, 2008).
  19. Z. Wu, J. Kinast, M. E. Gehm, and H. Xin, “Rapid and inexpensive fabrication of terahertz electromagnetic bandgap structures,” Opt. Express 16(21), 16442–16451 (2008). [CrossRef] [PubMed]
  20. C. E. Honingh, M. M. Dierichs, H. H. Schaeffer, T. M. Klapwijk, and Th. de Graauw, “A 345 GHz waveguide mixer using an array of four Nb-Al-Al2O3-Nb SIS junctions,” Supercond. Sci. Technol. 4(11), 683–685 (1991). [CrossRef]
  21. K. Yamamoto, M. Yamaguchi, F. Miyamaru, M. Tani, M. Hangyo, T. Ikeda, A. Matsushita, K. Koide, M. Tatsuno, and Y. Minami, “Noninvasive inspection of C-4 explosive in mails by terahertz time-domain spectroscopy,” Jpn. J. Appl. Phys. 43(3B3B), L414–L417 (2004). [CrossRef]
  22. Z. Wu, W.-R. Ng, M. Gehm, and H. Xin, “Hollow-core electromagnetic band gap (EBG) waveguide fabricated by rapid prototyping for low-loss Terahertz guiding,” in IEEE MTT-S Int. Microwave Symp. (Anaheim, CA, 2010).
  23. Z. Wu, W.-R. Ng, M. Gehm, and H. Xin, “Terahertz electromagnetic crystal (EMXT) based waveguide and horn antenna,” in 35th Int. Conf. on Infrared, Millimeter and Terahertz Waves, (Rome, Italy, 2010).
  24. B. Martinez, I. Ederra, R. Gonzalo, B. Alderman, L. Azcona, P. G. Huggard, B. D. Hon, A. Hussain, S. R. Andrews, and L. Marchand, “Manufacturing tolerance analysis, fabrication, and characterization of 3-D submillimeter-wave electromagnetic-band gap crystals,” IEEE Trans. Microw. Theory Tech. 55(4), 672–681 (2007). [CrossRef]
  25. V. M. Lubecke, K. Mizuno, and G. M. Rebeiz, “Micromaching for Terahertz applications,” IEEE Trans. Microw. Theory Tech. 46(11), 1821–1831 (1998). [CrossRef]
  26. R. Gonzalo, B. Martinez, C. M. Mann, H. Pellemans, P. H. Bolivar, and P. de Maagt, “A low-cost fabrication technique for symmetrical and asymmetrical layer-by-layer photonic crystals at submillimeter-wave frequencies,” IEEE Trans. Microw. Theory Tech. 50(10), 2384–2392 (2002). [CrossRef]
  27. E. Öbay, E. Michel, G. Tuttle, R. Biswas, K. M. Ho, J. Bostak, and D. M. Bloom, “Terahertz spectroscopy of three-dimensional photonic bandgap crystals,” Opt. Lett. 10(15), 1155–1157 (1994).
  28. F. Laermer and A. Urban, “Challenges, developments and applications of silicon deep reactive ion etching,” Microelectron. Eng. 67–68(1), 349–355 (2003). [CrossRef]
  29. G. Kiriakidis and N. Katsarakis, “Fabrication of 2-D and 3-D photonic band-gap crystals in the GHz and THz regions,” Mater. Phys. Mech. 1, 20–26 (2000).
  30. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8(3), 173–190 (2001). [CrossRef] [PubMed]
  31. Lumerical MODE Solutions package, v2.3.
  32. P. F. Goldsmith, Quasioptical systems: Gaussian beam quasioptical propagation and applications (IEEE Press,Piscataway, NJ, 1997).
  33. W.-H. Yu, Y.-J. Liu, T. Su, H. Neng-Tien, and M. Raj, “A robust parallel conformal finite difference time domain processing package using MPI library,” IEEE Ant. Propag. Mag. 47(3), 39–59 (2005). [CrossRef]
  34. G. Gruner, ed., Millimeter and Submillimeter Wave Spectroscopy of Solids (Springer, Berlin, German, 1998).
  35. J. C. Daly, Fiber Optics (CRC Press, Boca Raton, Florida, 2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited